
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB009033

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
only; Test and Evaluation; 03 FEB 1975. Other
requests shall be referred to Air Force
Avionics Laboratory, Wright-Patterson AFB, OH
45433.

AFWAL ltr, 19 Oct 1981

«uiiuBimwa mmm
i i mi ir • -I iri'mi -yj—i——

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE fffh«,. f'.r» ymi-frd;

6

,7^ j v AFAL-TR-75-242)

REPORT DOCUMENTATION PAGE
T KKAl) INSTRUCTIONS

BEFORE COMPLETOiO FORM
2 ÜOVT ACCESSION NO

 - , jBtPDHJ ftPERIOD COVERED
4. TITLE rand Subtillr) _-_««——- —«»» --^^ /'"'X— ' 'J^1 '•»—i

V \ (iY) Final Kepajrt.
^ A USER'S APPRAISAL OF AN AUTOMATED PROGRAM) ^i^pec 74 - tfc t.

VERIFICATION AID, ~
*

7 AUTHOR(s;

/ ^ LARRY K. /^HIPPLE
| MARK A./PITTS

•5 pERFORM|NG ORGANIZATION NAME AND ADDRESS
I

Air Force Avionics Laboratory (AFAL/AAT) Ub
Wright-Patterson AFB, Ohio 45433

3 RECIPIENT'S CATALOG NUMBER

') Final ikpftt, \
^Ipec 74 -gfct 73X
6 PERFORMING ORG Rr;>**T NUM BEH

8 CONTRACT O^JiaAR.T^iJ,M9Enr-s)

TÖ PROCRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Avionics Laboratory (AFAL/AA)
Wright-Patterson AFB, Ohio 45433

JiREPORT DATE

(l7) Dec »75 ")

Ti MONITORING AGENCY NAME A ADDRESSfi/ d/"er<»n(5SI CoäSfÖWtei OlUct)

3 NUMBER OF PAGES

77
15. SECURITY CLASS. f»i IWt rrpu».

UNCLASSIFIED

15«, DECLASSIFICATION DiOWMGRADING
SCHEDULE

16- DISTRIBUTION STATEMENT Cof Ih/« Reporr)

Distribution limited to U.S. Government agencies only (tes^and evaluation
3 February 1975); data contains Information which may be prejudicial to
the manufacturer. Other requests for this document must be referred to

AFAL/AAT, WPAFB, OH 45433.

17. DISTRIBUTION STATEMENT {mi the t&tfmt .nl.f.d In Block 20. II allsten, Iron, ReporO

Approved for public release; distribution unlimited.

18. SUPPLEMENTARY NOTES

19. KEY WORDS fConl/nuo on ri-vor.se side if necessary and Iden'lly by block number)

Automated Verification Aids
Computer Program Test Tools
Computer Program Testing

Computer Program Verification and

Validation
Computer Program Structure Modelling

2^ .BSTRACT (-Continue on reverse side It necessary and Identify by block number)

An evaluation of RXVP, an automated aid to FORTRAN program testing, based
on experience with the system in testing activities, is presented. System
capabilities and features are described. User assessments of serviced
provided are discussed. Strengths and weaknesses In system performance
as well as a collection of processing statistics are reported^

K
DD 1 JAN'TS 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEjfHTien na(V Efrkred) t/

Oil LlO^' /
mtmmmm ■iiiiiiMniiiuiiniiiiiiimiiiiiiM. uiini inm -

L ■ ■ — — "j— -• -■ ^ - - ~ ■-■ ' --* — -■ ■ - ■ - - --—
_ , ,„-—

PraHf^ ppnmppipp?» ' -■l " i1" ■ •■ -^|l- -^^m... J,I..L-IJ*IJIWB.I

SECURITY CL ASSlFiCATlQN OF THIS PAGE'^Tion Data Knfafdj

:

^

SECURITY CLASSIFICATION OF THIS P IGEfWhan Dat» Entered)

-f^.^.1^':- :>.-■;..,..-

PREFACE

This report reflects the results of work accomplished by the

System Technology Branch, System Avionics Division, Air Force Avionics

Laboratory, under Work Unit 2003-05-10. The project was sponsored by

the Directorate of Information Systems, Headquarters, Air Force Systems

Command (AFSC/ACD). Contractor support in connection with the project

was provided by General Research Corporation, Santa Barbara,

California, under Contract F33615/75-C-1195. The Air Force Project

Engineer and Principal Investigator was Captain Larry K. Whipple

(AFAL/AAT). Mr. Mark A. Pitts (AFAL/AAT) was Associate Investigator.

The participation of the following individuals and organizations

is gratefully acknowledged:

Dr. E. D. Callendar, Aerospace Corporation
Captain A. B. Carter, Sacramento Air Logistics Center
Mr., L. M. Culpepper. Naval Ship Research and Development

Center
Mr. R. Daniel, U.S. Army Computer Systems Command
Lt. R. L. Ettenger, Space and Missile Systems Organization
Mr. C. W. Fowlks, Sacramento Air Logistics Center
Ms. M. A. Goodwin, NASA Johnson Space Center
Mr. R. A. Hansen. Sacramento Air Logistics Center
Lt. D. Herrington, HQ. Air Force Systems Command (ACD)
Mr. J. Palaimo, Rome Air Development Center
Ms. M. S. Plemmons, Defense Mapping Agency Aerospace Center
Ms. 0. L. Power, Defense Mapping Agency Aerospace Center
Mr. R. Robinson. Rome Air Development Center
Captain J. L. R..Rooks, USAF Data Systems Design Center

Major A. W. Small. HQ. USAF (XOA)
Dr. R. B. Stillman. National Bureau of Standards

Thanks are also due Mrs. Sybil Hooper for her meticulous typing of

the manuscript.

'—'---""" - ■ - - ; '"- -' ■:...::t~:..~ --*-— ■■ - -- - - -'

liMIUM.LUAJiP'lliU'
1 '.

MMiiMitttMiMäiiiiBr—

TABLE OF CONTENTS

INTRODUCTION

RXVP OVERVIEW

PROJECT OBJECTIVES AND PROCEDURES

RESULTS AND CONCLUSIONS

RXVP STEP 1 (BASIC PROCESSING)

RXVP STEP 2 (STRUCTURAL ANALYSIS)

RXVP STEP 3 (TESTING INSTRUMENTATION)

RXVP STEP 4 (QUICKLOOK ANALYSIS)

RXVP STEP 5 (DETAILED TESTING ANALYZER)

RXVP STEP 6 (SELF-METERING INSTRUMENTATION)

RXVP STEP 7 (SELF-METERING ANALYSIS)

RXVP STEP 8 (STATIC CODE ANALYSIS)

RXVP STEP 9 (TESTING GUIDANCE)

RXVP STEP 10 (TEST CASE ASSISTANCE)

RXVP SYSTEM LEVEL CONSIDERATIONS

SUMMARY AND RECOMMENDATIONS

REFERENCES

APPENDIX A RXVP Processing Statistics

Section

1.0

2.0

3.0

4.0

4. 1

4. 2

4. 3

4. 4

4. 5

4 6

4 7

4 8

4 .9

4 .10

4 .11

5.0

Page

5

11

21

29

30

33

38

41

46

48

50

51

55

59

62

69

73

75

"""'"'•• ' ■■■" JII-■

i'RECEDiro PAGE BLANK-NOT ^IIWED

 - '■

'mm
•^^r^ n i mmm mit •■■ ■

1.0 INTRODUCTION

i.1 BACKGROUND

The military services, like our society as a whole, are becoming

increasingly dependent on the digital computer to provide the

information processing power necessary to function in an increasingly

complex environment. When reliance is placed on a computer as a

military decision aid or weapon system component, the reliability of

that computer and of its software are matters of paramount importance.

The cost of a critical failure or outage in this case may be measured

not in terms of dollars or individual safety but in terms of national

survival. For this reason, establishing the reliability of software

developed or delivered for use in its systems is of prime importance

to the Air Force.

Present technology does not permit "proving" the "correctness"

of large software systems. Instead, a degree of confidence must be

established through some evaluation/testing procedure. In testing

its applications software, the Air Force at different times may

assume either or both the roles of developer and acceptance tester [1].

As the developer of its own software, testing can sometimes proceed in

a deductive manner based on knowledge of the internal logic of the

program. As acceptance tester for software developed under contract,

to the extent that the internal logic is unknown testing must proceed

empirically. In neither case can absolute confidence be established,

since complete testing of the program under all conditions is

practically impossible. As stated by Gruenberger [2]: "... the art

lies in knowing what to test for, how to devise adequate tests, and

when to stop testing." The problem is one of designing the checkout

and testing process to obtain maximum confidence in the program

within the resources available.

The magnitude of resources involved is not small. An earlier,

much-quoted report [3] estimates that roughly A5% to 50% of the total

effort involved in a software project is typically spent in checkout

and test activities. Further, that with current Air Force

--—- ■■ — • - •■'- ■ - - - ..,—.-■ .

PRECEDING PAGE ELANK-NOT FILMED

•^ . ^^^ HHMM

11 ■ "■■"I Tsms. ■ —-„. U,",-,,..

expenditures of $1 billion per year for software, techniques saving

one man-day of checkout and test activity per man-month would save

$20 - $25 million per year.

As a result of all the factors mentioned, considerable attention

has been focused on automated aids as ways to improve the efficiency

of software development and of the testing activity in particular

([^]» [5], [6]). In discussing automated aids, however. Reifer [4]

concluded that:

"For all practical purposes, there exist no answers to the
following questions: What automated aids should we use and
when in the life cycle should they be used? What are the
effects of use? What are the limitations?"

This conclusion reflects the need for much more experience with

such tools before conclusions may be drawn regarding their specific

utility, the value of particular features, and optimum methods of

application.

1,2 PROJECT DEFINITION

In late 1974, the Directorate of Information Systems, Air ^crce

Systems Command (AFSC/ACD), decided to sponsor a project to exandne an

automated program testing aid from the user's point of view. A number

of such aids were being advertised, interest in their use and benefits

was high, but little information about them based on user experience

was available.

The Air Force Avionics Laboratory (AFAL) was similarly interested

in information about available automated program verification aids.

Air Force avionics software verification and maintenance facilities,

both proposed and established, require the support of such aids in

accomplishing their functions. The utility and features of available

tools were thus of interest from the standpoint of near term

applications. In addition, areas found to be of particularly high

potential benefit or areas found to be currently deficient could be

used in planning research in avionics software verification technology.

Finally, the Lab had in progress a number of software development

projects in which it was felt an automated testing aid might be of

6

^" - ■ ■ ^w—Attoii^tt-^Ar,. ■ -■—..■■ .■■■-...■^—,. ^^ --^ ^....vJ-.^..^,.^.iM.k-Jm..--. ..f.—■■■■- . ..--■■ ..^...... ,._.^^Lj^_. ...,_ ,,- I HMMM^aallia

»>mmih,-L~. >Wl>-'i '■ ■ - J - . ■ tMw*m^mw!vm*mi*\v

; i

benefit. For these reasons, the Lab undertook the investigation

sponsored by AFSC/ACD.

The project had two principal objectives:

(1) To examine the capabilities, utility, and features of^a
currently available automated testing aid from a user's

point of view, and

(2) To provide testing support for AFAL and other software

development projects.

A number of automated aids to program testing arc available.

Some have been developed as commercially marketable items in response

to a perceived need. Others werd developed (or are under development)

to specification under contract. Still others grew out of program

verification research projects. Several of the existing aids

originated as a result of contractor efforts to automate the more

tedious and error-prone manual processes associated with the software

development portion of some contract. These aids were adapted and

refined until enough general utility was obtained to permit the aid

to be considered a generally applicable tool. (This development

history is probably largely responsible for Reifer's [A] remark

describing most automated aids as poorly structured, poorly documented,

and poorly tested individual entities, not well integrated with each

other and the people who use them.)

The verification aid selected for the project was RXVP (Level 1),

developed by General Research Corporation (GRC), Santa Barbara,

California. Several factors influenced this selection:

(1) RXVP was operational and available for immediate

installation.

(2) RXVP was developed on the same family of computers as was
to be used as host for the project. Transferability

problems would thus be minimized.

(3) RXVP is advertised as being developed as "a complete,
wholly integrated software verification system" offering
"an organized approach to comprehensive testing" and
supporting "the validation and verification effort through
all its phases". RXVP could thus be considered as a total
system in support of testing activities rather than as a
collection of Individual tools each providing support to

some aspect of the testing process.

'■tt-rrfc'-tfitri'-^■■Aiiiir^ti^ili*'i^,<^ilttii^mihifV'-tirttlTliaiM^
J
JHJ'iil^f ': ■ f- T 1111■'! n!i'«M «r'lini\iV»-i ji.üjti-1'-^"-*'1'''"^-'^'^^^-^antiirfiifanTi^■^■^^■-J-^^-"*.^^*-^»>^-^-^-^■?-*■-■■•■!■ -.-..*-:.^-^.■■.■..'----, L.^L-.,■.,.,- L'..■Ii... ^^m.^^WA.^^^i-.iejw-.-;^^^^.*

m'immKmmijimmmmMf'-'''i>r'.,<iHmi^I
Mil

(4) RXVP was found to offer the broadest range of features of
any verification system for which information was available.

(5) RXVP is based on a model of the iteration structure of
FORTRAN programs. This same model forms the basis for a
verification system for JOVIAL language programs (Jovial
Automated Verification System) being developed for Rome Air
Development Center. Examining RXVP and the use of this
model might thus provide some advanced indication of the
characteristics and capabilities of an automated testing aid
soon to be a part of the Air Force inventory.

In brief, the project was organized around four principal

activities. The contractor (GRC) installed and maintained the RXVP

systen on the CDC CYBER 74 computer at ASD Computer Science Center,

Wright-Patterson AFB, Ohio. GRC also conducted a series of RXVP

familiarization/training workshops for project participants and

provided assistance to RXVP users as required. AFAL used the system

in testing activities for avionics support software being developed

to execute on both the CDC machine and another computer. A detailed

examination of RXVP itself was then undertaken. To provide a greater

variety of FORTRAN programs used in the project, a broader range of

opinions on which to base conclusions, and the advice of those more

experienced with testing tools, individuals from several government

agencies having interest and/or experience in automated test tool

technology were invited to participate in the workshops and to use

the RXVP system on their own programs. These individuals made

valuable contributions to the project. Finally, to demonstrate

expert application of the RXVP system in testing a program not

familiar to the tester (as in the role of acceptance tester), CRC was

to test a selected program developed by AFAL.

1.3 RE' JRT ORGANIZATION

The balance of this report discusses the details of the work

accomplished during the project and the results obtained.

Section 2.0 provides an overview of the RXVP system to

familiarize the reader with pertinent terminology and characteristics.

Section 3.0 presents the project objectives and procedures in

more detail.

8

.ia.j..jaa.^.a.&fa :amja«^afla,^-maau^i»-«»»~. ■ .■■.;..,..^. .■:..i n«- iiirHiitii-millli -'■■—'""■-'-^ ■
-■'-"■-"'^-■B"

■——-^

Section 4.0 contains the results and conclusions derived from

the project activities.

Section 5.0 summarizes salient conclusions about RXVP and

automated testing tools in general, and presents recommendations

based on those conclusions.

No familiarity with the RXVP system is required for reading this

report at a general level. To understand some of the more specific

comments and references, however, requires a degree of familiarity

obtainable by reading the RXVP User's Guide and Reference Manual

([9], [10]).

■-^--^■■■» ''iliiif fiiiMtiiiiiiittyit iriffliit.:».to«-c^^.^.A-^ ---■ ■■■- ■-■'■ _._:...

F'1'"" !BwgWW"WJI*1" -"'■' 'm-ivjymi ,-lL .. i. if. . ■ LJI.,_4,IIIII

wi»"'1riirirniMMMM— 11 ■■ ^
mmmm^^'^'

I

2.0 RXVP OVERVIEW

2. i MVP. OBJEcmes
RXVP is an automated software verification aid designed to assist

in the test and verification of FORTRAN programs. It performs a

structural analysis of the subject program and stores the results in a

data base. Using the data base, RXVP can supply:

static analyses of individual program modules and groups

of modules

. automatic instrumentation of the program control

structure

. instrumentation at the statement level for recording
statistics on program variables

. testing strategy guidance

. assistance in generating test cases

. quick-look and post-test analyses of testing coverage

. post-test reports of program variable statistics.

The objective of RXVP is to provide analysis services needed for

the verification and validation of large FORTRAN software systems of

up to one-thousand modules totaling up to two-hundred-fifty-thousand

statements.

RXVP is intended to support the verification and validation

effort by promoting the systematic testing of single modules or groups

of modules. It provides the user with (1) test coverage documentation,

detailing exactly what portions of the program modules were exercised,

(2) test case generation assistance to help the user generate test

cases to exercise untested portions of each module, and (3) static

analyses providing information helpful in locating possible sources

of program error.

2.2 RXVP ORGANIZATION

RXVP is organized into ten separate STEPs, each of which

conducts a functionally related set of processing tasks, which

communicate through a common data base. These STEPs and their

associated functions are listed below:

11

FRECSDIMG PAOE ELANK-MOT ?ILM3D

-,■-;■■;■,.■.-.:■■■-—■

SSi ^W "»,"'-11 mmmmmWKMi>f>u« mimmimmmmmw^mm>^mmmmKmmmm
1'""«'u u

«■IIIIIIBII.I .^

Source text input, lexical scan,
syntactic recognition, and initial source

library creation

Structural analysis and execution path
identification; library update with
structure and path information

Program instrumentation for execution
path coverage analysis

Execution of instrumented code and quick-
look analysis of program path coverage

Detailed analysis of program path
coverage; execution traces and summary
statistics

Statement-level instrumentation for
program performance analysis

Detailed analysis of program performance
with individual statement execution

results

Program static analysis; subroutine call
sequences; array subscript checks;
expression mode checks; etc.

Test guidance providing rational,
systematic testing strategy not immediate-
ly visible from inspection of source text

Assistance in the generation of test
cases to exercise untested program paths.

It should be noted here that all these STEPs need not, and probably

will not, be executed in the above order. Neither will they all

necessarily be executed in any one testing activity.

Included in many of the processing STEPs is a data manager that

provides library merging capabilities, report heading and subheading

specifications, initialization commands processing, module selection,

standard print-outs of library contents, and specification of

alternative files to be used during RXVP operation.

RXVP uses a command language to provide control of the standard

processing STEPs. Certain commands are known as "universal" because

they are common to all STEPs while other commands are only recognized

by certain STEPs.

STEP 1 (BASIC)

STEP 2 (STRUCTURAL)

STEP 3 (INSTRUMENT)

STEP 4 (QUICKLOOK)

STEP 5 (ANALYZER)

STEP 6 (SELFMET)

STEP 7 (SMANALYZE)

STEP 8 (STATIC)

STEP 9 (GUIDE)

STEP 10 (ASSIST)

12

fei^^»ato,e»jA^
:^»^^j*aaji»i»fem^mM^ -.. .^...■.„-^■^- '■ ^ - - V — ■ :-.Ü

B^S^BSS^S

I : I

A random access file is used to record the original source text

and associated tables containing structural information, symbols and

their classification, and other module-descriptive information. This

random access file, known as the library, is created during the first

processing step (STEP 1). During the next step (STEP 2), the library

is updated to include program structure information. After STEP 2

processing, the library is complete and is used as input for all

remaining processing STEPs. STEPS 1 and 2, therefore, need not be

run again as long as the library is saved. The major sections of the

completed library are:

(1) Analyzed source text

(2) Module descriptor block

(3) Entry points

(4) Statement descriptor block

(5) Symbol table

(6) Program structure information

2.3 RXVP OPERATION

2.3.1 How RXVP is Used

The program modules to be analyzed by RXVP are assumed to

compile correctly using a language translator for the FORTRAN dialect

specified as the one RXVP is installed to accept, and to execute to

termination for some given set of initial test data.

RXVP processing is organized into four major phases. The

first phase is the basic processing of the source code. This phase

reads the modules, builds the symbol and statement tables, assigns

node and statement numbers, identifies module structure in terms of

DD-paths and level-i paths (see Paragraph 2.4), and provides a

comprehensive static analysis. All this information is then

assembled into the data base or library.

The second phase accomplishes the instrumentation of the

control structure and/or individual statements of each program

module.

13

r'MHlfni-niil"''"'^"'"* ■ ■ - -^— ■
■- ■" -.-■ -.^—. . >■■■■: I- - .. ■ -

■--^~'^-"^---'-"'-

^mmsmt^ .rimmvmmmmMmAMmdmmfm m i J.I.IIIU mm —

PHASE I
STEPS:
BASIC (1)
STRUCTURAL (2)
STATIC (8)

PHASE II
STEPS:
INSTRUMENT (3)
SELFMET (6)

No

FORTRAN
SOURCE CODE

I
ANALYZE CODE, PERFORM
STRUCTURAL ANALYSIS,
CREATE/UPDATE DATABASE

INSTRUMENT
CONTROL_STRUCTURE

INSTRUMENT
STATEMENTS

I
TESTING STRATEGY GUIDANCE
& TEST CASE CONSTRUCTION

ASSISTANCE

GENERATE NEW
TEST CASES

I
PROGRAM EXECUTION

I
ANALYZE TEST COVERAGE

ANALYZE PROGRAM
PERFORMANCE

FULL
STATIC

ANALYSIS

PHASE IV
STEPS:
GUIDE (9)
ASSIST (10)

PHASE III
STEPS:
QUICKLOOK (4)
ANALYZER (5)
SMANALYZE (7)

Yes

Figure 2.1 RXVP Testing Overview

14

■ ■ ■ ■ - -- ■-» — --.—.....^-^n - - - -■ -- ■ ■ ■ ■ - -J

i

The third phase is the test coverage analysis phase. It

provides detailed analyses of control structure and individual

statement coverage, and reports on the computational behavior of

program variables.

Phase four generates reports on overall testing strategy and

reports to aid in the generation of new test cases.

Figure 2.1 gives an overview of how RXVP is used in the testing

of software and lists the STEPs for each phase.

Each STEP contains execution options, selectable using the RXVP

command language, to tailor the processing to the user's needs.

As previously stated, not all of the STEPs (and certainly not

all of the options) need to be executed in the process of testing a

software system. STEPs 1 and 2 must be run to create and update the

program library. It is then left to the user to determine the STEPs

and options that will provide the information and services relevant

to his individual testing needs.

Each RXVP run begins with a set of STARTUP commands which

directs RXVP initialization and ends with the command START. Next

come the commands describing the STEPs and options which are to be

executed. These commands are followed by the END command, which

correctly terminates the RXVP run by closing the appropriate files.

The reader is referred to References [9] and [10] for more details

regarding use of the RXVP system.

2.3.2 Modes of Operation

Operating modes of individual installations of RXVP are

largely dependent on the facilities and operating procedures of the

host computer system. Factors affecting operating modes of an RXVP

installation include computer memory size, mass storage capacity,

operating system features, job scheduling algorithm, and facility

administrative practices.

In some installations, each RXVP processing step constitutes

a separate job or job step. In other installations, RXVP is installed

15

 ■Hi«tli«IIIHIi i'.-.- - HI mij ml ■ -..^■"■--^—^•^|,r, , ,,. ■ * — - - ~- ■■■ -a

-■-a:-1 =: .-..■ fmsggBUfgQ

as a system of overlays, with all (or selected) processing steps

accessible by command In a single job step.

2.4 FORTRAN PROGRAM ITE1ATI0M 8TMICTUIE MPD1L1BG

Thf structural analysis performed by RXVP for each program module

consists of (1) determining all Decision-to-Decision paths (DD-paths)

within the nodule and (2) combining DD-paths into non-iterative

sequences called level-i paths.

A DD-path is a sequence of statements between decision points in

a module. It begins with the sensing of the result of some predicate

evaluation and includes all subsequent statements through the

evaluation of the next predicate, but not the action taken as a

result of the evaluation of the second predicate.

IF(I.EQ.IO) GO TO 100 (10.11)

IF(N.GT.15) K = 20

J = I + 20

(12,13)

100 CONTINUE

Figure 2.2 DD-Path Illustration

16

,.^.:.^^*1i....^^....^^:^:^J.^:-,^r ■-.,:.,■ ..^. ■aj.:..~ ■,..,•:-
' '"■ '—•-'

MMlikMia

I

In Figure 2.2, DD-paths 10 and 11 begin with the result of the

evaluation of the predicate (I.EQ.10). DD-path 10 represents the

TRUE result, commencing with the statement GO TO 100, and including the

CONTINUE and any subsequent statements through the evaluation of the

next predicate.

DD-path 11 represents the FALSE result, commencing with the

statement following the IF-GO TO statement and ending with the

evaluation of the predicate (N.GT.15).

DD-path 12 begins with a TRUE result of the evaluation of the

predicate (N.GT.15) and includes the statement K = 20 as well as

subsequent statements through the evaluation of the next predicate.

DD-path 13 commences with a FALSE evaluation of (N.GT.15), continues

with the statement J = 1 + 20 (omitting K = 20), and terminates with

the evaluation of the next predicate. Note that DD-paths 12 and 13

both begin and end at the same points in the module and thus can be

considered to be parallel.

A DD-path class is a set of parallel DD-paths (called BROTHERS).

In Figure 2.2, DD-paths 12 and 13 are parallel (hence, are BROTHERS)

and are members of the same DD-path class, while DD-paths 10 and 11

are non-parallel and are not members of the same DD-path class.

Level-i paths are sequences of DD-paths which comprise non-

iterative flows in the program module. A level-0 path is a sequence

of DD-paths that begins at module entry, ends at module exit, and

does not traverse any decision point more than once. (See Figure 2.3.)

A level-1 path is a sequence of DD-paths that begins at a

decision point on a level-0 path, ends at the same or an earlier

decision point on the same level-0 path, and does not include any

DD-paths which are on level-0. , A level-2 path is similarly defined

relative to level-1 and so on for higher order level-i paths.

This constructive definition permits iterative flows through the

program to generally be described in terms of combinations (NB

not sequences) of level-i paths.

17

■LL. -in i-i-Yiv^;--%■ Mwhjfiinairi^;^ . ni-hrtmi-ainaft ■ ■■ i . ^ - ■ - ^--t.~^~^ I, , . ij-^ini i , ,i ..itfi

I »ll»llMll ■

LEVLL-0 PATHS

1- ■2- 5-11
1- •2- 10
1- •3- 11
1- -4- ■11

LEVEL-1 PATHS

6- -8
7- -8

LEVEL-2 PATHS

BROTHER DD-PATHS

3 & 4
6 & 7

LEVEL-Q PATH CLASSES

1-3-11, 1-4-11
1-2-5-11
1-2-10

LEVEL-1 PATH CLASSES

6-8, 7-8

LEVEL-2 PATH CLASSES

•>> DD-PATHS

DECISION
POINTS

Figure 2.3 Directed Graph of a Sample Program Structure

18

liriMiiMllitiliiiiäiiir i n - 1 f n inmtiritffftlliftltiiMitll^iti^iilftirjiilriri^miii^iiMi ^aaiifa-^iMirtilWVi T i^iSl- - L TU ■iiili[<«ir--'--wi:^^L--"- -;-Y^ii(!itriVMi

wmmm^A^m^^^'M^' ■■■-■■■^w^
— W*^. II I II I llll I I

A level-1 path class, 1=0,1,2,..., is a set of level-i paths,

each a different sequence of DD-paths from the same collection of

DD-path classes, that traverse the same set of module decision

points.

The structure of a module can be represented by a directed

graph in which nodes represent decision points in the module and

edges represent DD-paths. (Figure 2.3) See references [7], [8],

[9], and [10] for a more complete discussion of iteration structure

modelling.

19

f iMi^ifefrii^^*1**^^ .-_:..._..—L... ...;.._.,.::.■._ :.-. _ .^^.v-lfaLUu^ti^ii.

. II ÜJIJUmJJ- ■ "^ ■ ~-" Wf^^^m"' ' ■L1-WJL--if4-J=l-:^-t .^IW,4#I1IUJUS1J

3.0 PROJECT OBJECTIVES AND PROCEDURES

3.1 OBJECTIVES

As previously mentioned, the project was designed to accomplish

two principal objectives:

(1) Examine the capabilities, features, and utility of a
currently available automated program verification aid
(RXVP) from the user's point of view, and

(2) Provide testing assistance to AFAL and other software

development projects.

The examination to be conducted in order to satisfy the 'irst

objective consisted of two parts. The first part was a subjective

evaluation of RXVP based on the experience gained in providing

testing assistance to the software development projects (i.e., in

accomplishing the second objective). This evaluation was to assess

the benefits derived from the use of RXVP in the testing function,

the convenience with which RXVP could be applied in the user's

testing environment, and the adequacy of the features provided for

accomplishing the testing objectives. Also to be considered were the

amount of user familiarization and training required to apply RXVP

beneficially in the testing process, the adequacy of the user docu-

mentation supplied with the tool, and the ease of interpreting the

testing and analysis results.

The second part of the examination was an objective investigation

of certain characteristics of the RXVP system. The goal here was to

obtain such measurements as the execution time required for various

RXVP analysis functions, the amount of core memory required for RXVP

execution, the amount of on-line storage required for RXVP installation

and RXVP data bases, and the core and execution time expansion factors

resulting from RXVP instrumentation of a module under test. Discrep-

ancies in RXVP performance were also to be identified and investigated

in this part of the examination.

Four of the five criteria set forth by Ramamoorthy and Ho [6\

for evaluating automated software support tools were addressed by

this two part examination. The subjective evaluation principally

21

pREcsDim PAGE BUMmwr mum
"'••"•.--ir——-^—

^..'-.....■-..:.. ■,::: _ ... , .;■..'■.: . .: :,..-. ,■■ ■

l^!PS^™i:.-UU4, - mmmmmmmmmmmimm^f*KL.im^i,—t.u-.,.. ..-

addressed the criteria of resolution power (i.e., the facility with

which the tool provides interesting details extracted from the bulk

of the source code) and ease of use. The objective part was mainly

concerned with the criteria of tool validation (i.e., how well the

tool itself has been qualified) and, to some extent, with transfer-

ability and flexibility characteristics for adapting to different

testing environments. The criterion of generality, reflected in an

ability to accept different languages, was not addressed, although

the ability to accept different dialects of the same language

(FORTRAN) was considered.

3.2 PROCEDURES

3.2.1 RXVP Installation

RXVP was installed at the ASD Computer Science Center on a CDC

CYBER 74 computer to operate under the SCOPE 3.4 operating system.

The system was installed as a series of overlays so that all RXVP

analysis STEPs were accessible (via the command file) from a single

invocation of the RXVP program. The usual operating mode was remote

batch from a terminal located at AFAL. Installation specifications

called for RXVP to process FORTRAN programs written in the CDC FORTRAN

Extended dialect as well as the ANSI X3.9 Standard FORTRAN.

A modified version of RXVP STEP 4 (QUICKLOOK) was installed on

a Datacraft 6024/4 computer at AFAL. The Datacraft 6024/4 is a

24-bit/word machine with a 750 nanosecond cycle time. The memory size

at the time of the RXVP installation was 32K words. Mass storage

consisted of a single nine-track tape drive and a Datacraft 5208

Cartridge Disk Drive with a capacity of approximately 2.75 million

words. The Datacraft is being used as a system component in an

avionics software support system being developed by AFAL. The purpose

of the installation on the Datacraft was to examine the use of RXVP

in testing software executing on a machine other than the RXVP host

machine. This situation would be common when using a verification

aid in conjunction with avionics software development and maintenance.

Considering the characteristics of computers often used as system

22

■■—■- ^—•- -— ~ , ■■■o,-.->- ^.^.^^jL^^ .^ . , . . ,_._,__ _,

'•^^m^-^^^^^v^^m*
■MM

^mmi^^nmt IIJI i rmm^m-m*

components, it is highly probable that verification aids used in

testing software developed for most systems would not be installed on

the computer where the testing would be accomplished.

The principal difference between the version of STEP 4

installed on the Datacraft and the version installed as part of the

RXVP system on the CYBER 7A was the manner in which the QUICKLOOK

testing coverage reports were generated. In the standard version,

testing coverage reports are generated automatically following each

invocation of the instrumented program. Provisions are made for

repeatedly invoking the instrumented program to permit several test

data-sets to be processed as a group [10]. This requires the report

generation and invocation control routines, as well as the execution

trace data collection routine, to be loaded with the instrumented

program under test. To minimize the amount of memory required to

execute instrumented programs on the Datacraft, only the execution

trace collection routine was loaded with an instrumented program.

Execution coverage reports were produced in a subsequent run from

the trace file recorded during execution of the instrumented program.

A separate Testing History file containing summaries of coverage

achieved by each execution was referenced and updated by each report

generation run. This file permitted cumulative coverage reports for

several test data-sets to be produced.

3.2.2 Non-Host Computer Program Testing

Two avionics software support programs, written in ANSI X3.9

FORTRAN to execute on the Datacraft 6024/4, were selected for testing:

a generalized table-driven assembler (ALAP) and an instruction-level

computer simulator (ILS). These programs consist of 1366 FORTRAN

statements in 24 modules and 1604 FORTRAN statements in 32 modules

respectively. The type of testing to be accomplished was of the final

delivery/acceptance category. Testing goals were to exercise the

known principal logic flows using standard test data sets, to measure

the execution coverage provided by these data sets, then to achieve

execution coverage of all DD-paths in the program. The assistance

23

MJ->.vw,,^„-.^t...:^,^.^-^^..SiJ^»LM!,a»äM,^.:w/.,J..,J., --■ .., ,. -^^.ui.gMliMMfef-^^^ : .,.^.A:^^v^^^^.^.^^^,a^.-»...-..^....,;.vi^.^^^^^..^i«JMl

r ""■"■ '■"" ■ -—

of RXN'P in creating program documentation was also of interest. The

basic procedure established for testing each of these programs was as

follows:

(1) The program was processed through RXVP STEP 1 (BASIC) and
STEP 2 (STRUCTURAL) on the CYBER 7A and the RXVP data base
created was cataloged for future reference.

(2) Any desired RXVP static analysis reports were produced.

(3) The program was instrumented for execution coverage data
collection by RXVP STEP 3 and the instrumented source deck

was punched.

CA) The instrumented source deck was compiled and executed on
the Datacraft using the standard test data sets.

(5) Execution coverage reports were generated on the Datacraft
from the trace file recorded during the previous execution
and from the Testing History file, the Testing History file
was updated, and the cumulative execution coverage was

determined.

(6) Testing guidance and test case construction assistance
reports to assist in accessing DD-paths not yet executed
were obtained from the CYBER 74.

(7) The instrumented program was again executed on the Data-
craft with test data derived using the reports produced

in Step (6).

(8) Steps (5) through (7) were repeated as necessary.

ILS was to be tested by CRC to demonstrate expert application

of RXVP in testing a program with which the tester (i.e., acceptance

tester) was not intimately familiar. ALAP was tested by AFAL.

3.2.3 Program Testing on the RXVP Host Computer

A collection of programs of various types (e.g.., simulation

models, language processors, scientific/numerical calculations, etc.)

was analyzed and tested on the CDC CYBER 74 using RXVP. The types of

testing ranged from development and debug testing through acceptance

testing. Some of these programs were developed by AFAL. Others

belonged to organizations invited to participate in the familiari-

zation workshops and/or other aspects of the project. Programs

examined during the familiarization workshops were generally

restricted to 400 statements or less due to the limited amount of time

24

■ ■ -' ■ iWfMfÜlliü ^.hA^w^-ttW^^^iljiifr^fri^ ., :, •——■^s"--'-- ■^kiii^iiiii^i^

mmm^i*
■»T- m" - ii

mmmmmmmm

available and the difficulties sometimes encountered in transferring

programs to the CYBER 74. Each participant used RXVP however he

desired in examining his programs. Most used procedures very similar

to the one illustrated in Figure 2.1.

Comments were solicited from the project participants regarding

their experiences and impressions. These comments together with the

conclusions of the AFAL investigators formed the basis of the

subjective evaluation of RXVP.

3.2.4 Investigation of RXVP Characteristics

To measure various characteristics of interest to potential

users of RXVP, a subset of the programs previously examined was

selected and subjected to a standardized RXVP processing procedure.

An attempt was made to select a mix of programs of differing types,

sizes, structures, and complexities. The objective was not to obtain

a valid statistical characterization of RXVP performance. Rather, it

was to obtain order-of-magnitude indications of the values of certain

performance factors in RXVP analysis of assorted real programs.

Each selected program was first compiled and, where possible,

executed to obtain core and execution time baselines. All measure-

ments were taken on the CYBER-74. This was done primarily for two

reasons: to reduce the number of additional variables involved when

two computer systems are used (e.g., different compiler efficiencies,

different loader characteristics, etc.), and because it was not

convenient to measure execution time with sufficient precision on the

Datacraft. The programs designed for the Datacraft could not be

executed on the CYBER-74 due to word-length dependencies. No

execution time measurements were therefore made for these programs.

After obtaining the baseline measurements, each program was

processed through RXVP with the following options selected for each

module in the program:

(a) Basic analysis

(b) Structural analysis

(c) Print module and symbol table

25

^i-aa^

jllj. p^iHA«,-U»*pwil»J jiiiiiiiiiL,! m,M4i4imMmL,irMii^M^imiiimm**mim^ W;W'«JM^*W*1J^^*:MIV.W1H»W''J-|IWJJ. *«%•*-■■

(d) Full static analysis

(e) Print I)I>-Paths (DDP's) and Level-i Path Classes (LIP^s)

(f) Print the program graph

(g) Print summary of module characteristics and history of
analysis results

(h) Instrument the module for testing coverage data collection

(i) Instrument the module for statement-level execution data
collection.

Control statements in the RXVP command file caused RXVP

execution times to be reported for each command (or closely related

group of commands) as each module was processed.

Compilation of the instrumented program decks to determine new

core requirements was the last st:p in processing each of the unexe-

cutable programs.

For each of the executable programs, the deck, (instrumented

for testing coverage data collection) was compiled and executed under

control of the RXVP STEP 4 (QUICKLOOK) testing option. Here, RXVP

controlled automatic invocations of the instrumented program for each

test data-set identified, recorded a trace file of the resulting

executions, and generated individual and summary (cumulative) reports

for each invocation of the program.

The next step was RXVP analysis of the execution trace file

just recorded, and correlation of that data with data in the RXVP data

base describing the structure and complexity of each module in the

program.

The program deck (instrumented for statement-level execution

data collection) was next compiled and executed to generate a

statement-level trace file.

The final step was RXVP analysis of the statement-level trace

file.

The combination and order of options selected for the RXVP

processing of each of the programs was not intended to reflect

typical use of the system in any real application. The purpose was

to obtain the desired performance measurements for a variety of

26

ftniini tiiniii iiiatfi

~~p~-~ w*.™1' —"• «^^»r^j*fk-?-!„)^-r. WUÄM.up^-^M-^ir^k. ^

Ml

programs. In some cases, therefore, some of the outputs were

included for completeness and standardization rather than because they

contributed important information concerning the particular program

being processed.

As a result of the above standard processing, the following

measurements were obtained using the selected sample programs:

(1) RXVP execution times (on a per-module basis) for basic
analysis (STEP 1); full structural analysis (STEP 2)
with all reports; printing of the analyzed module and its
symbol table; full static analysis (STEP 8); printing of
all DDP's, LIP*'s, and the module structure graph;
printing the summary of module characteristics and
history of analysis results; instrumenting the module
for testing coverage data collection; and instrumenting
the module for statement-level execution data collection.

(2) RXVP execution times (on a per program basis) for
QUICKLOOK (STEP 4) report generation, STEP 5 analysis of
execution coverage trace file, and STEP 7 analysis of
statement-level trace file.

(3) Module core expansion factor and program execution time
expansion factor resulting from both execution coverage
and statement-level instrumentation.

(4) The number of words of on-line storage required for the

RXVP data base.

The amount of core required to execute RXVP itself and the

core overhead connected with execution of instrumented programs were

also determined.

Finally, a number of questions which arose during the testing

process were investigated using modules specifically designed for this

purpose. (This generally involved isolating and identifying some

RXVP performance anomaly.)

27

^tg/gmf^mmmm^rsfx!

4.0 RESULTS AND CÜNCLUS1ÜNS

The results obtained from the examinations conducted during the

project and the conclusions made based on those results are presented

in this section. The section is organized following the structure of

RXVP. Each RXVP functional STEP is first discussed individually. The

function of the STEP is briefly reviewed and any subjective user

reactions to the STEP are summarized and discussed. These reactions

generally reflect the user's evaluation of the STEP in terms of such

factors as ease of interpreting output format and content, adequacy

of the features incorporated for accomplishing the intended function,

and problem areas encountered in using the STEP. Next follows a

discussion of the STEP in more objective terms. Any deficiencies

and/or discrepancies encountered in using the STEP are presented.

Here a deficiency is defined to be any system fault or limitation,

whether documented or not in RXVP publications, which was felt to

adversely affect system utility. A discrepancy is defined to be any

system characteristic in conflict with either RXVP documentation or

contract requirements. (Several deficiencies/discrepancies were

corrected by GRC during the course of the project. Since our

objective here is,insofar as possible, to discuss the system as it

currently exists, and since these corrections are presumably

incorporated into any future installation, these items are not

explicitly referenced.) Finally, any appropriate general statistics

which were found to characterize STEP operations are presented.

(Statistics collected during standard processing of specific modules

are reported in the Appendix.)

Following individual consideration of the RXVP processing STEPs,

items pertaining not to specific STEPs but to the system as a whole

are discussed. The RXVP command language and system documentation are

two of the topics included in this discussion. Finally, RXVP

installation considerations are addressed. These considerations

deal not only with physical facilities required, but with system

29

 ---■ At

PRECSDIMG PAGE ELANK-MüT flLMÜD

•■*-*•

availability to the user and its effect on the manner in which the

system is used.

4•l ^XVP STEP 1 (BASIC PROCESSING)

The function of STEP 1 is to input a FORTRAN program from the

RXVP INPUT file and convert it to a series of descriptive tables to be

stored in a random-access library file for future reference. These

tables, the statement descriptor table, the statement table, and the

symbol table, are the principal outputs from the STEP. User control

options specify whether or not program COMMENTS are to be retained

in the library file, whether the program is to be listed or not, and

how many modules on the INPUT file are to be processed. Output to the

user consists of the module number assigned, some storage and process-

ing time statistics, a few basic module statistics, the module listing

(if selected), and certain error messages if difficulty is encountered

in processing the module.

BASIC processing is accomplished in two stages. The first stage

is a lexical scan of the module wherein statement tokens are isolated

and identified. In the second stage, the statements are parsed,

classified, and node numbers are assigned.

Since the function of STEP 1 is not primarily user oriented, user

subjective reaction to the STEP was minimal. The only comment con-

cerned the way in which statement tokens are isolated in storing the

module in the library file. Blanks inserted to isolate tokens

sometimes cause subsequent listings of the module to be more difficult

to read.

STEP 1, being the FORTRAN "recognizer" for the RXVP system,

implicitly defines the set of programs which can be processed. Any

deficiencies or discrepancies in STEP 1 are therefore significant

because they limit this set.

4.1.1 STEP 1 Deficiencies Noted

(a) FORTRAN keywords, if not delimited by a special character,
must be blank delimited. This constraint is documented in
the RXVP Reference Manual. Its impact when analyzing a
particular program is obviously a function of programming

30

I

style Its most serious consequence in our experience
resulted from failure to recognize DO statements of the
form- D020J - I,». Because all vital RXVP functions
are based on a model of the Iteration control structure
of the module, failure to recognize such an important
component of that structure is catastrophic.

(b) No statement may contain more than 250 tokens. This
constraint is documented in the RXVP Reference Manual
which suggests breaking the statement into equivalent
smaller statements. This was philosophically objectionable
to all those who encountered the problem, as the general
opinion was that the tool should accommodate the program
and not vice-versa. The most common way in which the
constraint was violated was in long DATA statements, which

" required considerable care to segment correctly.

(c) Any EQUIVALENCE statement must follow all COMMON and
DIMENSION statements. This constraint is also documented
in the RXVP Reference Manual. It imposes an artificial
restriction on programming style. (Whether any particular
restriction was good or bad was not addressed. The
criterion used was whether any standards were imposed in
addition to those required to compile correctly.) Several
programmers held the view that the EQUIVALENCE relation
was clearer when stated in conjunction with the
declaration/dimensioning of the variables involved.

(d) Only single expression IF statements are permitted. This
constraint is documented in the RXVP Reference Manual.
For the set of programs used during the project it caused
few problems, since the IF-IF construct was encountered

only rarely.

(e) COMMENTS consisting of more than 65 characters following
the C (in Column 1 of the card) are truncated to 65
characters. COMMENTS are realigned by RXVP so that the
first non-blank character following the C is placed in
Column 7. If the COMMENT was purposely aligned differently
by the programmer for some reason, this realignment defeats

his purpose.

4.1.2 STEP 1 Discrepancies Noted

(a) The installation specification called for RXVP to process
FORTRAN programs written in the CDC FORTRAN Extended
(Version 4) dialect. (This dialect is hereafter referred
to as FTN.) It was soon determined that the system as
installed was not compatible with FTN, principally because
of the instrumentation inserted by STEP 3 (see Section
4.3.2, Item (a)). STEP 1 was also found not to recognize
certain FTN constructs (e.g., the alternate

31

t, OU. 1U. —■■—,-.-.■:■, .-..--^ ■,.^-, ■■■ ..-Z.J- — /. -~ ■■-* —.^ ^—,--;^^- ^ .. .-v.. ■ - ■ - .-....■■ -J

m PPIWIUUI

(b)

(c)

Cd)

(e)

(f)

(g)

RETURNS(SI,..,Sn), RETURN i, and READ fn.varlist
constructs). The installation was, in fact, found to be
more compatible with the CDC RUN compiler dialect. Since
for the purpose of the project either dialect was generally
satisfactory, a decision was made to adopt RUN as the
standard dialect in order to proceed most expediently. No
attempt was made to systematically determine all the STEP 1
incompatibilities with either the FTN or RUN dialects.
Instead, whenever an incompatibility was detected which
involved a language feature common to both RUN and FTN it
was recorded. The decision to adopt the RUN dialect should
not obscure the fact that RXVP as installed did not
successfully accommodate the specified FORTRAN dialect.

Interior blanks are not permitted in any symbol. The
occurrence of interior blanks can cause spurious variable
names to be generated (some even defining variables as
having numeric names), misinterpretation of FORTRAN
keywords and spuriously generated keywords, logical and
relational operators to be unrecognized, and numeric values
to be split into parts with resultant difficulty in
recognizing the mode of the constant.

Multiple statements per card are not permitted. The
statement separator "$" is not recognized.

The n.Dm and n.D-m data specifications are not recognized
as double-precision. They are classified instead as type
REAL.

Double-precision constants are truncated to 10 characters.
The truncated constant cannot then be recognized in many

cases.

An array dimensioned in an INTEGER statement and subse-
quently assigned to COMMON by a COMMON statement is
identified as a LOCAL rather than COMMON array.

COMMENTS between continuation cards are not permitted.
This feature of FTN and RUN is sometimes used by
programmers to label the data items in a long DATA
statement.

(h) The NAMELIST statement is not recognized by the parser.

4.1.3 STEP 1 Statistics

RXVP STEP 1 required approximately 69,000 words of CYBER-74

main memory for execution. This includes provision of the Standard

Print Commands for printing the library tables produced in STEP 1.

32

--^—■-- — --'-mffiriMMi --^^-^—--^-^■^—■ ,^.^,^,,4^»- -^.^^ ~. ~.. J. - ■ittoiifrniMiMMM in ! mi , —— amav.n Mhnn ,illtf ! ■ nr— .•-^..- . .__.,. ^. ■..._,.—.

n_Mdmi-»u&umvmmmJmmwmpm m^mmm

t>. 2 RXVF STEP 2 (STRUCTURAL_ANALYS.IS)

The function of STEP 2 is to perform the analysis of program

module iteration structure on which the remaining RXVP STEPs are

based and to add this structural information to the RXVP library file

established in STEP 1. The analysis performed by STEP 2 consists of

(1) identifying all DD-paths in the module, (2) determining the

module iteration structure in terms of level-i paths, and (3)

computing a series of complexity measures based on the types of

statements comprising the module and its iteration structure.

The module complexity measures are computed using three factors:

individual statement complexity, DD-path complexity, and level-i path

complexity. The complexity of a single statement is found by adding

a constant value (reflecting the statement type) and the length of any

expressions in the statement. Expression length is defined to be

the number of tokens required to write the expression using reverse

Polish notation. The sum of all constituent statement complexities

defines the "total static complexity" of a module. The complexity of

a DD-path is computed from (1) the sum of the complexities of the

statements comprising the DD-path and (2) a weighting factor

WL = 2**L, where L is the (highest) iteration level on which the

DD-path lies. The sum of all DD-path complexities is called, natural-

ly enough, the "total DD-path complexity" of the module. Finally, the

"total level-i path class complexity" is defined to be the sum of the

complexities of all level-i path classes in the module. The complex-

ity of each level-i path class is found by adding the DD-path complex-

ities for a representative member of the level-i path class.

Control options permit the user to specify whether DD-paths alone

or DD-paths and level-i paths are to be identified, whether complexity

measures are to be computed, and whether a summary report or one

detailing the individual statement, DD-path, and level-i path class

complexities is to be produced.

According to RXVP documentation [10], the complexity estimates

made by STEP 2 provide a basis for rationalizing decisions regarding

33

■ ; ■.. : .. ■.- .-.. . ■■.■.■■ ,r, <.I.I.,I. .■.^....«■^,■■ -'- '-*-■- —- --.■-■■ ■ <■ -^ — —- —■ ^ - -.-■ ^ ■—- - ^ - - --J

T" ■■^■■■■iP'P'PPPPPn'V"' :LJI.,4il!!IJl_TLL=.L. .. J .

I

where to next apply testing effort in a testing activity. The

hypothesis is that the more complex portions of a software system

(as identified by the various complexity measures) should receive

testing priority.

In our experience, RXVP users paid little attention to the

complexity measures. One reason was an inability to correlate the

complexity measures computed by RXVP with one's own judgmental

estimate of module complexity. This, of course, is because the

number of factors taken into account by an individual in estimating

the ill-defined property of module complexity is much larger than that

used in the RXVP algorithms. The (subjective) weights assigned to the

various factors are very much a function of the individual's past

experience, and may be influenced by his knowledge of how the

particular module is to be used. A few sample remarks are indicative

of the general lack of regard for the RXVP complexity measures:

(1) Subroutine CALLs and FUNCTION invocations are known to
contribute to the probability of errors in execution due
to interface problems and side-effects. Because they
represent relinquishing control of execution (and hence
control of future computational environment) by a module,
they serve to increase the module's "complexity", if
in that term one includes the interaction of a module with
its environment (i.e., modules with higher degrees of
"connectivity" are more "complex" than those without).
In computing statement complexity, however, RXVP
algorithms give no more weight to CALLs or FUNCTION
invocations than to simple assignment statements.

(2) The complexity of a level-i path class is computed using
the "leader" (i.e., lowest-numbered) DD-path from each
set of parallel UD-paths in the level-i path class.
Since the "leader" DD-path is not necessarily the most
complex member of a parallel set, it may be a poor basis
for determining the complexity of the level-i path class.
More important, by using a single level-i path (the one
consisting of "leader" DD-paths) to determine the
complexity of an entire level-i path class, no distinction
is made between a level-i path class with a single member
(no parallel DD-paths) and a level-i path class with
multiple members (representing alternate flows of execution

within the class).

34

^.^ , i i. .iijiw*-- -—..—.,.—.■■.., - - -■-■- - - - ■ ■ .■■...-- .. - ■ ..■ fnV1MBrfiiW-^^J-^-*i;'1irW^ ■■- - -*

^

■'

:

l

(3) What is the justification for weighting the static (total
statement) complexity of a DD-path with an exponential
^unction of the iteration level on which the DD-path lies
in determining DD-path complexity? That is, why does
nesting a given DD-path one level deeper in an iteration

structure double its complexity?

Most RXVP users who considered the complexity measures at all

regarded them as interesting numbers, uniformly computed for various

modules, but of little practical significance in program testing.

While complexity measures are computed in STEP 2, the primary

function of the STEP is to develop the structural model of the

selected FORTRAN module. This model, expressed in terms of DD-paths

and level-i paths as discussed in Section 2.4. is the basis for the

remaining RXVP STEPs concerned with module control structure

instrumentation and testing. Most users, accustomed to thinking of

modules in terms of sequential flows of execution, had little

difficulty understanding the concept of DD-paths. Level-i paths and

level-i path classes, however, representing a less familiar

decomposition of the module into levels of iteration, generally

proved more difficult to understand.

4.2.1 STEP 2 Deficiencies Noted

(a) The only deficiency noted in the ability of STEP 2 to
model the iteration structure of FORTRAN modules is
attributed not to a problem in STEP 2 per se but in the
relation between the definition of level-i path and
potential iteration in the module. According to the
RXVP Reference Manual [10]. the level-i path concept is
intended to permit defining flows within a program in
terras of successive "levels" of iteration. Quoting from

that source:

"Level-i paths are non-iterative sequences of
DD-paths defined in such a way that flows through
the program (including iteration) can be represented
as corabinations of level-i paths ... a level-0
path is a sequence of DD-paths that begins at program
entry and ends at program exit, and is non-iterative;
that is. it does not traverse any decision point more
than once ... A level-1 path is a non-iterative
sequence of DD-paths. none of them on a level-0
path, that begins at a decision point of a level-0

35

.^^.r;t-^.-^,.,^.tü., ^ft^t^iAtrtH^i^^^ -- - ■-■■ ■■-■ —■ '- ■-■ ..■■■ .- :..;.: .,^-v-;^^:^-....-^^..:;^^.^„^t^feiJife^^ ■ ■.^...^....■^■^r^^^^iv.^,.::,.^. .■^■;^.^r.:...;.J.^-:v.^ ■— :.:-'/^

T ■nrl -

path and ends at the same or an earlier decision
point of the same level-0 path."

A level-i+1 path thus represents a program flow which
forces a repetition of some decision that lies on a level-
i path. Since level-i paths are defined strictly on the
basis of structural considerations, prohibiting any DD-
path which is part of a level-i path from being a part of
a level-i+1 path (by definition) renders the model incapa-
ble of representing certain types of iteration structures.

The problem which arises can best be Illustrated by means
of an example. Figure 4.1 shows the source code and
(reduced) program graph for the FORTRAN FUNCTION sub-
program INDEX, which returns the index of the first
occurrence of the data item R in an array. A, having N
entries. RXVP structural analysis of this module identi-
fied four level-0 paths, consisting of the DD-path
sequences 1-2-7, 1-2-6-4, 1-3-4, and 1-3-5-7. The
iteration represented by the DD-path sequence 6-5 was not
identified as a level-1 path (and could not be according
to the definition). In this instance, the failure of RXVP
to reflect a possible iteration was easy to see. In more
complex situations (e.g., if DD-paths 6 and 5 were more
complicated subgraphs and/or the structure resulted from
control constructs other than the DO statement), such an
omission might not be as readily apparent.

Paige [7] points out that for programs in which only the
three control constructs IF-THEN-ELSE, WHILE-DO, and
sequential execution (shown to be sufficient by Böhm and
Jacopini [11] for expressing any algorithm) are used, all
level-i paths, i>0, are loops corresponding to WHILEs.
There is, therefore, a direct correspondence between
level-i paths and iteration levels in "structured"
programs. While the level-i path concept can still be
useful for (unstructured) FORTRAN programs, the relation
between the structural notation and iteration in the
program is much less direct.

Every cycle in the structural graph of a module represents
at least a potential for iterative execution. If the aim
is to permit decomposition of the program graph to reflect
successive "levels" of iteration, it appears that either a
better means of handling those DD-paths located at the
intersection of cycles on different "levels" is required,
or that logical considerations must be included in
defining level-i paths. It is interesting to note
that in the example given the level-0 path 1-2-6-4
is logically impossible. If notice is taken of
the fact that executing DD-path 5 is prerequisite
for executing DD-path 6, the latter DD-path can

36

».J.FJH^FWi.:;-.. W '■. '--'■ ^i- v.wwwi. ■- !■*- nw ?**•" •- .■ ■ .-^--.l^,^.-.,..l.,-.r-.. . » M ■Hp.yWi_.,,i»«.fttBPm.'i'-i"''^u™;(wjii,.ipwii .m iii^.yp^^MÄ,...,^'^-^- ■ UmpVPetpipPSP^iPp

Node

[1] FUNCTION INDEX (R.A.N)
DIMENSION A(l)

[2,3] IF(N.EQ.O) GO TO 20
[4] DO 20 1=1,N
[5.6] IF(A(I).EQ.R) GO TO 30
[7] 20 CONTINUE
[8] 1=0
[9] 30 CONTINUE
[10] INDEX=I
[11] RETURN
[12] END

(a) Program Text and Node Assignments

l
i

© 0

6

5

n

decision node

 ♦ DD-path

w
(b) Reduced Program Graph

Figure 4.1 Array Search Function Example

37

■Bflawü
'""'"■■"

 — . . . ii ..-.. ' i iiiiiiiiMliiWliWiilllillliii«aM»Mw»ii»--^^.
iHLPnimu^ i.i ^

only represent a repetition of the decision at node 5
and hence must lie on a level-1 path.

4.2.2 STEP 2 Discrepancies Noted

No discrepancies in STEP 2 operation were found during the

proj ect.

A.2.3 STEP 2 Statistics

RXVP STEP 2 required approximately 70000io words of CYBER-74

main memory for execution. This includes provision of the Standard

Print Commands for printing the library tables produced in STEPs 1

and 2.

An approximate upper bound on the number of words, S, of mass

storage required for the complete RXVP random-access library file for

most FORTRAN programs is given by:

S = 2000 + 3000(number of modules) + 60(number of statements).

4.3 RXVP STEP 3 (TESTING INSTRUMENTATION)

STEP 3 produces the instrumented version of the FORTRAN modules

selected to be tested in subsequent STEP 4 execution. Control

options enable the user to specify (1) whether or not the instrumented

version of the module is to be listed, (2) whether or not a compilable

deck is to be produced, (3) whether all DD-paths or just module ENTRYs

are to be instrumented, (4) whether or not the standard set of

instrumentation statistics is to be printed, and (5) the name of the

trace data generation module, if the RXVP standard module (named

TSPG871) is not to be used in STEP 4. STEP 3 manipulates a given

input module to produce a logically equivalent version with software

probes (CALLs to a trace data generation module) inserted in each

DD-path (if that is the option selected). This instrumented version

of the input module, written in compilable form on the file. LPUNCH,

is the normal principal output of STEP 3.

Users were generally satisfied with the features of STEP 3

(except for four important discrepancies to be discussed) and found it

easy to use. One additional capability was suggested to improve the

convenience of subsequent STEP 4 testing. Because of the way in which

38

li»—■mill '-" ■■" --■■ - ■ ,.„^..,,^.^«a^.^.,t^.,...w»a,>jg» ■■^■...^..^m^.a^.^ji^^MA^a^^

PM 1 ui lll|.»,ll BPPRIBHII^PS!^* t»l^H»WPW»»W^W wnm 1I«!JI||I«JP.I.IJIII,!,|JJ,

Hi «»-»■■»lilt

ummuimimmmi^^M ß..\ii .. wi^

STEP 4 controls the invocation of programs under test and recaptures

control following their execution, any PROGRAM must be changed to a

SUBROUTINE before being processed by RKVP if it is to be executed

under STEP 4 control. The STEP 3 instrumentor could eliminate this

requirement by automatically converting a PROGRAM card to a

SUBROUTINE on the instrumented output file LPUNCH. In STEP 4 the user

must supply a trivial driver routine (TSTPRG) to invoke the instru-

mented program via a SUBROUTINE CALL. This requirement could also

easily be eliminated if STEP 3 provided at least the option to

automatically generate the driver routine on the file LPUNCH, with

the name of the program to be invoked supplied either in the option

control statement or by recognition of the PROGRAM card.

4.3.1 STEP 3 Deficiencies Noted

No deficiencies were identified in using STEP 3.

4.3.2 STEP 3 Discrepancies Noted

(a) The instrumented modules produced by STEP 3 could not be
compiled using the FTN compiler if the original module
contained a DATA statement. FTN requires any DATA state-
ment to follow all specification statements. LOGICAL
variable declarations generated by STEP 3 in the instru-
mentation process are inserted preceding the first
executable statement in the module. If a DATA statement
is present in the original module, this causes a
compilation error.

(b) Multiple ENTRY points are instrumented incorrectly. For
a module having n ENTRYs, RXVP STEP 2 assigns DD-i-aths 1
through n to the ENTRY points in the inverse order in
which they occur in the module. That is, DD-path n
represents the primary module entry and DD-path 1 repre-
sents the last alternate ENTRY encountered in reading the
module source code. STEP 3 instrumentation, however,
causes the primary module entry point to report as
DD-path 1 and the alternate ENTRYs to report with DD-path
numbers reflecting the order in which the ENTRYs occur in
reading the source code (i.e., STEP 3 numbers module ENTRY
points inversely to STEP 2). As a result, execution cover-
age reports do not correctly reflect the portions of the
module actually executed.

(c) A second discrepancy in instrumenting multiple-entry
modules is not related to the numbering of DD-paths.
Code representing an alternate ENTRY, k, in a multiple-
entry module is often executed as a result of an

39

^fhi-iiTff'r»'tiiii"ja^""--'--'"',""'^--^-"'---^'''''J';'-'' J.^-.--tir'Vii^ft^itlrfj'"-^"^"'l'"A'^^ -■ - ■

(d)

(e)

invocation through another ENTRY in the module. To
prevent falsely reporting an invocation through ENTRY k
in this situation, STEP 3 inserts logic intended to
temporarily disable the probe in the DD-path assigned to
ENTRY k. This probe, however, is not reenabled prior to
exiting the module. As a result, once the module has been
invoked via any entry point, subsequent invocations through
any ENTRY other than the yrimary entry point will not
report execution of the DP'-path assigned to the ENTRY.

RXVP uses the " character as a means of marking
significant blanks within FORMAT statements in modules
stored on the random-access library file. When the
instrumented version of these modules is generated,
STEP 3 restores the blank in place of the double-quote.
This substitution is accomplished a little too zealously,
however, with blanks substituted for all double-quotes,
not just the ones originated by RXVP. As a result,
Hollerith strings which were originally delimited by the
" character become unrecognizable and cause errors in
compilation.

The final STEP 3 discrepancy noted causes no problem with
any portion of subsequent testing activities. It merely
reflects an Innocuous abnormal condition. If the last
non-blank character In any RXVP-formatted source code line
(i.e., having tokens Isolated from one another by blanks)
occurs after Column 65, a spurious blank CONTINUATION
card is generated on the file LPUNCH. This holds true
for COMMENTS as well, although the spurious card is not a
blank COMMENT but becomes a (blank) continuation of the
first non-COMMENT card preceding the COMMENT.

4.3.3 STEP 3 Statistics

The primary statistics of interest when instrumenting a program

for testing are the effects on the program's core requirements and

execution time. These effects obviously depend on the nature of the

program. The core expansion factor for a program consisting of many

short DD-paths is going to be greater than the expansion factor for a

program with a few long DD-paths. The effect on execution time is

going to be greater for a program with high rates of iteration and

short DD-paths than for a program with long DD-paths and little

iteration. Appendix A reports the effects of instrumentation on the

programs used in the investigation of RXVP characteristics.

Execution time expansion factors ranged from 4.75 to 24.59 with no

40

v,....,,.^»,^,^

wm^nmmmm JJlHpjja^,,,. .ii ,,,1, ■"-^■"^■T^-^^ :■=■- •«l' '"' I l"1 ^■^■vwni.H ■■«Mi i^i i«i IIIMI IMII m i «nwvi^MM^^H^^^«^!

nriiini

clearly discernible characteristic value. The core expansion factors

for the programs considered were much more consistent, with the

average expansion of executable core due to STEP 3 instrumentation

being by a factor of 2.4. Executable core is that portion of main

memory occupied by a program exclusive of global and local data

storage (i.e.. not including I/O buffers, arrays, variables, and

constant storage).

STEP 3 required approximately 5150010 words of CYBER-74 memory

for execution.

4.4 Wff Wm 4 (QÜICKL00K A^ALYStBI

The purpose of STEP 4 is to control the execution of a set of

instrumented modules, to record the trace data generated during the

execution, and to provide reports outlining execution coverage

achieved by each invocation of the program under test and cumulatively

for all invocations. Unlike the other RXVP STEPs. STEP 4 does not

require access to the RXVP library file to accomplish its function.

This makes it possible to test programs executing on a machine other

than the RXVP host. Depending on the particular testing situation

and machine to be used, some "customizing" of STEP 4 may be required

for most efficient use. Sections 3.2.1 and 3.2.2 discuss the custom

installation of STEP 4 on a Datacraft 6024/4 computer at AFAL and the

procedure for using this installation in program testing. Experience

with this customized version of STEP 4 will be discussed shortly.

The standard version of STEP 4 controls the testing activity in

response to commands supplied by the user in the RXVP command stream

The program under test operates as an independent entity under control

of STEP 4. reading its own inputs and producing its own outputs as

usual. The command options permit the user to specify the instru-

mented modules for which trace data is to be collected, those

modules for which Individual execution coverage reports are desired

and the types of reports to be produced. After module selection and

report options are set. the user supplies a series of Test and Test-

Case Identifier cards. The Test Identifier is used to classify a

41

. ._ - -^.iiätrJÜ**

i ■■ -in«. imr^^*?mHr**u?m

series of test cases which follows as a set. It is printed as a

heading on each page of the reports generated for all test cases in

the set. Each Test-Case Identifier serves to define a corresponding

set of input data on the input file of the program under test. STEP

4 invokes the program under test once for each Test-Case Identifier

found in the RXVP command stream. The corresponding input data

supplied must be sufficient to drive the program under test to a

termination. The Test-Case Identifier is printed as a subheading

for the reports generated as a result of the corresponding invocation.

When the command END SET is encountered in the RXVP command stream,

the STEP 4 standard commands processor regains control and a new set

of option settings may be made for subsequent tests.

In addition to being recorded on an execution trace file, trace

data is accumulated by STEP 4 in a series of COMMON blocks. These

blocks also contain the control option settings and working storage.

Because their size is predetermined, they set limits on certain

aspects of the testing activity. These blocks and their default

constraints are summarized in Table 4.1. In the standard version of

STEP 4 on the CYBER 74, the user can override the default values by

providing a BLOCK DATA program defining the desired block storage

capacity. This procedure is outlined in the RXVP User and Reference

Manuals.

STEP 4 was found to be generally easy to use and the reports

well formatted, easy to interpret, and adequate for the intended

function of reflecting execution coverage. This STEP was, in fact,

considered to be one of the best developed in the RXVP system. The

function provided by STEP 4 was found to be of significant value to

the testing activity, particularly when conductinc tests in the role

of acceptance tester. The principal benefit was an accurate record

of exactly what had been tested by the various test case data-sets.

While DD-path execution coverage is not in itself a sufficient testing

objective, or even an adequate measure of the value of a particular

test case, it does reflect the degree to which the logic has been

42

^..^■^.^■■jikUV^':-... JiixSJi

^Il11 114^1^,) UU. .■imj|iLJ.il"i]J!MIU;l»y«LIWyj^*pj[iJ !WHl■P!plf■^^HI^rB!^^PW,

1-11 ii-T iinnif-r-

TABLE 4,1

DEFAULT STORAGE AREAS

Block Name

MODNMS

NMDDPS

LSTMOD

MODSPC

INDEXS

ONETST

DDPTST

INVTST

INVCUM

NOTHIT

CUMTST

DDPCUM

Contents

Module names

Number of DD-paths per
module

Modules selected for
single module reports

Module numbers

Module data storage
pointers

Single test DD-path
counters

Module total DD-paths
executed per test

Module invocations,
single test

Module invocations,
cumulative

DD-paths not hit
working storage

Cumulative test DD-path

counters

Module total DD-paths
executed cumulative tests

Default Maximum

10 modules

10 modules

10 modules

10 modules

10 modules

200 total DD-paths
in all modules

10 tests (10 modules)

10 tests (10 modules)

10 tests (10 modules)

100 paths not hit

200 total DD-paths
in all modules

10 tests (10 modules)

43

.<■■■:■■. -.^

^,—
iiJiUUMAJJJfJJJHJUDWLiüiy

investigated and permits evaluation of the relative efficiencies of

various data-sets in exercising the program. In addition to reporting

testing coverage, the STEP 4 reports in one case led directly to the

discovery of a program error by disclosing that, although not evident

from normal output, a program was not executing as presumed.

4.4.1 STEP 4 Deficiencies Noted

No deficiencies were identified in using STEP 4.

4.4.2 STEP 4 Discrepancies Noted

No discrepancies were discovered in STEP 4 operation.

4.4.3 STEP 4 Statistics

Using the default block storage capacities previously discussed,

STEP 4 required approximately 16500io words of CYBER-74 main memory

(in addition to that occupied by the instrumented program) for control,

data collection, and report generation routines and I/O buffers.

4.4.4 STEP 4' (Datacraft Testing Analysis)

While the remarks which follow apply directly only to the

custom version of STEP 4 installed on the Datacraft 6024/4 computer

at AFAL, they reflect considerations which are felt to be fairly

common In testing programs on a relatively small computer system.

The principal requirement to be satisfied by the version of

STEP 4 installed on the Datacraft was to minimize the memory overhead

connected with execution of instrumented code. The programs to be

tested required a significant percentage of the Datacraft memory for

execution, even when uninstrumented. When fully instrumented, they

could not be loaded. In view of this situation, it was necessary

to test the programs by instrumenting a subset of the program

modules, executing the program with a given test case data-set,

recording the results in a testing HISTORY file, repeating the

execution of the program with a different subset of modules

instrumented, and combining the results with the data already on

the HISTORY file. (For one of the programs tested, ten such

44

—- ^- ■■—■ ■■' - ■■ - - —■ • •■'■— -~- ■■ --"— --■ - — ■-- — - - • -'

PJPIpP^'i.j .--^■5'^^'R™!»"I>!^m!W!SB^^

i

executions were required for each test case data-set to provide

information equivalent to one fully instrumented execution.) Because

of this mode of operation, the multiple invocation feature of STEP 4

was discarded as superfluous in STEP 4'. The STEP was partitioned

into an execution/trace-data-generation step and a report-generation/

HISTORY-file-update step. A modified version of the trace data

generation module, TSPG87, and a trivial driver program were the only

additional components loaded for execution with the instrumented code.

The trace data was not accumulated in memory as in the standard

STEP 4, but only recorded on the trace file. In this manner, the

core overhead associated with execution of the instrumented code was

reduced to less than 1000 _ 24-bit words.

Report-generation/HISTORY-file update ran as a separate job

using the trace and HISTORY files. The reports generated were the

same as those provided by the standard STEP 4. Control options were

also essentially the same, although the command format was different.

In addition, options dealing with the use and update of the HISTORY

file were provided. The COMMON blocks previously discussed for

accumulating trace data and setting control options were part of the

report-generation portion of STEP 4'. Because the programs under

test (even when partially instrumented) exceeded the default

constraints, block storage had to be increased. The Datacraft

loader, however, requires that all modules referencing a COMMON

block specify the same length for the block. The BLOCK DATA program

method for overriding default storage values was therefore not

directly applicable, although a rather devious means of using it was

devised.

Another problem was encountered in recording the trace file.

The standard trace data generation routine, TSPG871, writes a

formatted, unblocked record on the trace file each time it is

called by a software probe in the instrumented code. Using this

method of recording trace data, a 2400 foot reel of magnetic tape

could hold approximately 30000 trace records. The largest working

45

„J..... .> ■- ..■.— --, inn niiiiMin'iiifiiiiiii —--•■- ' ■ ■„-„■■-J.-^.l., ...i.-- ■ —--■■■ • - -—■ -■-

I II" ' snppMP '-^^^-•~
■nn iiiilii. »ij i

storage area available on the Datacraft disk could hold even less.

For the programs under test, with only a portion of the modules

instrumented, trace files consisting of up to 650000 records were

not uncommon with certain test case data-sets. (This was true even

when repeated records caused by iteration on a single DD-path were

eliminated.) The trace data generation module was rewritten to

block and buffer the data to the trace file. As a result, a reel of

tape was capable of holding over 750000 trace records and total

execution time was greatly reduced.

After some experience with the testing procedure of combining

the results of several partially instrumented executions, the need

for a HISTORY file editing and summary capability was recognized.

A program providing the desired features was written, improving the

convenience and flexibility of the testing process. In summary,

STEP 4' testing activities on the Datacraft computer were more of a

problem than corresponding activities on the RXVP host machine due

primarily to two difficulties:

(1) a much less efficient testing procedure made necessary
by core limitations not experienced on the larger

machine, and

(2) an inability to record the trace file from test
executions in the original manner on the mass storage

devices available.

If the system is to be used in testing software executing on other

than the RXVP host machine, some detailed knowledge of the internal

operation of STEP 4 is probably necessary to permit tailoring the

STEP to meet various testing situations.

4.5 RXVP STEP 5 (DETAILED TESTING ANALYZER)

The function of STEP 5 is to provide more detailed information

regarding testing coverage by combining the data recorded on the

trace file as a result of an instrumented test execution in STEP 4

with data in the RXVP library file reflecting the structure and

complexity estimates of the program under test. Control options

permit the user to define the set of STEP 5 reports to be produced

and the modules to be included in the coverage analysis.

46

t.lir..iii n i i..i ,■ HL ■ iii ii».»««.»....-^-..«-!»,. - ■...,..■., J.-,-.-—.., ^■J- ^ .- . ..■ .J... . .,,—■,.,^,„, ■ - ■-■

w-www——w
'• ■ ■" ' '•

wmmmmmAin -i-'- v - Irin
■ II II ■"HP "" ^m

The new information provided by STEP 5 consists principally of

describing execution coverage in terms of percentages of module

statements and complexity exercised, and identifying the correspond-

ence between the DD-paths executed and level-i path classes in the

module. In addition, STEP 5 provides the capabilities to print the

execution trace file, yielding a record of DD-paths traversed in

execution order, and to present this same information in terms of a

trace of the order in which level-i paths were completed by the flow

of execution. Using the program graph presented in Figure 2.3 as an

example, and numbering level-i path classes in the order in which

they are listed in the upper-right portion of that Figure, an

execution flow represented by the DD-path sequence 1-4-7-9-8-11

would be reported as a level-i path class trace in the order 5-4-1.

Because the level-i path (class) concept permits describing

execution flows in terms of combinations rather than sequences of

level-i paths (or classes), this latter feature was not considered

to be particularly valuable as a trace of program execution,

particularly in modules having complicated structures and several

Iteration levels. Considered as a report of the combination of

level-i path classes exercised, the same information could be

presented in a much more readable form.

Only two of the six available STEP 5 reports were considered

significant. One was the DD-path trace previously mentioned. The

other was a cross-reference table displaying the membership of each

DD-path In the various level-i path classes, and whether or not that

DD-path had been exercised. Of marginal interest was a summary

report reflecting, among other things, the number and percentage of

statements exercised. The other reports were considered to be

either of little value to the testing activity or redundant in view

of the STEP 4 reports.

The thing most users wanted to see, following an examination

of the STEP 4 reports, was the set of code comprising the DD-paths

not exercised. To get this information the ASSIST,PROPERTIES,

47

.^;J^^.^- ■ - ■ ^i -^^ ■ :> ^ ^:..J^1^..^^^1.^n^; .-..:■ ..v^.^.^ .,:-;■., .,■■, ^ ... L^ij^-i, "BfiiHTHMinBifi i,i^linirimitifiatt'j-,^''-;-'' —"^-^- -;— ^-—^-^

■ t. ' ■ » ■»"' —

DUPATHS, conunand of STEP 10 was used. STEP 10, in fact, often

became the de facto "detailed testing analyzer." This preference was

a reflection of the desire to see testing results in terms of the

program itself rather than in terms of an abstraction of the program

(i.e., the DD-path structural model). The STEP 10 Properties Report

was ideal for this purpose, with the exception of the composite

predicate portion of the report which was somewhat inappropriate when

parallel DD-paths were included in the set not exercised. Because of

this experience, it is felt that the capability to produce some

version of this report automatically, selecting DD-paths to be

included based on the trace file data, would improve the utility of

STEP 5 in the testing activity.

4.5.1 STEP 5 Deficiencies Noted

No deficiencies (other than that previously implied by the

suggested improvement) were noted in using STEP 5.

4.5.2 STEP 5 Discrepancies Noted

(a) RXVP documentation and STEP 5 report headings indicate
that the data presented as a result of the STEP 5 commands
ANALYZER,LIP TRACE and ANALYZER,TABLE is in terms of
level-i paths. In fact, the data is in terms of level-i

path classes.

4.5.3 STEP 5 Statistics

STEP 5 required approximately 69500 words of CYBER-74 memory

for execution (if the Standard Print Commands were included).

A • 6 agyP fftSS 6 {SlEL.F-tiiTE^Il^ IHSTBMMENTAf X0IO

STEP 6 provides the capability to instrument selected modules to

collect data reflecting the behavior or performance of each individual

statement during execution of the module. The output of the S'xEP is

the instrumented version of the selected module, which is written in

compilable form on the file LPUNCH, together with a report giving the

options in effect for the instrumentation. User options permit

specifying the name of the file on which the instrumented code is to

be written, the name of the file on which the execution data

48

■^^■^^^.w.^a^rtijyttiL^ - . ■ -^.-^.i.::...:.^. ..■■:., ;..^.

I^rmr-v.*' •

generated by the instrumented code is to be recorded (default name

LTEST), and whether or not statistics on the values of variables

resulting from execution of ASSIGNMENT statements are to be recorded.

Unlike STEP 4 execution of programs instrumented at the DD-path

level, no reports are generated in conjunction with the execution of

programs instrumented at the statement level. Reports are generated

instead by STEP 7 from the data file recorded during the instrumented

execution. Only the data recording routines called by the statement-

level software probes and (because STEP 4 requires PROGRAMS to be

converted to SUBROUTINES prior to being processed by RXVP) a trivial

driver routine need to be loaded with the inscrumented code for

execution.

If STEP 3 were capable of automatically converting PROGRAMS to

SUBROUTINES during DD-path level instrumentation as suggested in

Section 4.3, the requirement for a driver routine to execute

statement-level instrumented code would be eliminated.

4.6.1 STEP 6 Deficiencies Noted

No deficiencies were identified in using STEP 6.

4.6.2 STEP 6 Discrepancies Noted

(a) The instrumentation of IF statements, as presently
accomplished, may result in an instrumented version of
the module which is not logically equivalent to the
original module. Specifically, if the predicate of an
IF statement contains a FUNCTION invocation, and if the
FUNCTION has memory (i.e., if the value returned is a
function of previous as well as the current invocation),
then the instrumented code is not logically equivalent to
the original module because the instrumentation produces

extra invocations of the FUNCTION.

(b) Double-quote marks in FORMAT statements are replaced by
blanks, just as discussed in Item (d) of Section 4.3.2,
resulting in unrecognizable Hollerith strings that were
originally delimited by the " character.

(c) As in Item (e) of Section 4.3.2, if the last non-blank
character in any RXVP-formatted source statement (other
than COMMENTS) occurs after Column 65, a spurious (blank)
CONTINUATION card is generated. RXVP-formatted COMMENTS,
however, are truncated to Column 71 with no continuation.

49

^.j^v^ik^ ^.. ji^^^.-^^il^^^ «n^irfiiitritiiifari ^^w*. -i-'--"'"-j"ai-L-

tWiWW-W

4.6.3 STEP 6 Statistics

STEP 6 required approximately 47000^0 words of CYBER-74 memory

for execution. Executable core expansion factors due to statement-

level instrumentation ranged from 2.8 to 4.9 for the set of programs

considered, with the average module expansion factor being about 4.4.

Execution time expansion factors ranged from 8.1 to 27.9.

4.7 RXVP STEP 7 (SELF-METERING ANALYSIS)

STEP 7 produces the statement-level execution report describing

the execution of modules previously instrumented by STEP 6. The

trace file recorded during the instrumented execution and module

information from the RXVP library file are used in generating the

report. The report takes the form of an annotated listing of the

module, with the following information supplied:

(1) Statement number

(2) Statement text

(3) Statement execution count

(4) Count (and percentage) of TRUE evaluations of logical
IF-statement predicates, and the result of the final
evaluation

(5) Count of alternate branches taken from arithmetic IF-
statements

(6) Number of times the module was invoked, the number of
executable statements it contains, and the number actually
executed.

If the module was instrumented appropriately in STEP 6, the

initial, final, minimum, maximum, and average values of variables

resulting from execution of ASSIGNMENT statements may also be

reported. A report may be generated for every invocation of the

module, to summarize the results of all invocations, or both. User

control options also permit specifying the modules for which the

reports are to be generated.

STEP 7 was found to be easy to use and the reports, as intended,

to provide more detailed computational information than was available

from STEP 4 and 5 reports. Because of this fact, STEPs 6 and 7 are

50

..- .,l,.Uill,..7.
KL4^.JN^.|III|!U^?piLI .Jl,.W.i^j«^ rii.|i..g^| i ruiuj^iyiiii,^

•— ||,>i<M(a(aMfai<f|l|^|-r1|flMia||,,)M^^|j,)M

I

«

far more appropriate for program development and debug testing than

are STEPs 3, 4, and 5.

With regard to using STEPs 6 and 7 in these early program testing

activities, there was one suggested additional capability within the

present context of the STEPs: the ability to selectively extract

trace file information to produce a detailed record of the activities

of specified statements during execution.

4.7.1 STEP 7 Deficiencies Noted

No deficiencies were noted in using STEP 7.

4.7.2 STEP 7 Discrepancies Noted

No discrepancies were found in STEP 7 performance.

4.7.3 STEP 7 Statistics

STEP 7 required approximately ASOOOiQ words of CYBER-74 memory

for execution.

4. 8 RXVP STEP 8 (STATIC ANALYSIS)

STEP 8 provides a collection of procedures for the static

analysis of module code and produces a series of reports useful in

program development, testing, and documentation activities. The

reports are generated from the RXVP library file produced in STEP 1.

(The structural information added by STEP 2 is not required.)

STEP 8 services can be classified into three functional categories:

(1) extended intra-module compiler checks/reports, (2) isolation of

selected functional classes of data and statements, and (3) inter-

module invocation checks/reports.

Included in the first category are: an enumeration of statement

types used in the module, a variable cross-reference table indicating

how and where the variables are used, a check of all array references

for dimensional conformance with the array declaration, a check of all

expressions for mode conflicts, a report describing the formal

parameters of the module, and a list of all variables not explicitly

typed in the module declarations. The second category consists of:

identification of all local variables and constants, identification

51

i^— ntfVifn.i. iKi.aii'.rirfri.r ■• >.■.-.. ■.^.,.^- -. -.,, |n,t—.-.o~..-..<-- ■ : - - — -■■"'

mmwmv*mt'MimmLi-'."^mm,u.ummmjmmmmm'imjuij. iix. i., u i i iwm niiia j i min tu 11 i ' Ul »IIJIB»!^^^^^^^"

*

of the module "communication space" (i.e., the variables appearing

in the argument list and COMMON variables used), identification

of all constants and variables used in predicates, identification

of the "local memory" (defined to be those local variables used in

predicates) of the module, identification of all product expressions,

identification of all denominator expressions, a list of all READ

statements with the associated FORMAT statements, and an outline of

all DO-statement nests. The third category provides a check of all

module invocations to determine that actual and formal parameters

conform in number, type, and dimension. It also can provide, in

either tabular or graphical format, the invocation tree rooted at a

selected module. These checks/reports can be selected by the user

either individually or in predefined groups.

The services provided by STEP 8 were useful in examining

individual modules and particularly in determining the relations among

several modules. With further refinement and enhancement, the

variety of STEP 8 functions was felt to have even greater potential

benefit.

One area of suggested improvement deals with determining module

connectivity. The present module connectivity analysis is

distributed over three STEP 8 functions: invocation tree generation,

communication space definition, and invocation parameter conformance

checks. For systems having large numbers of modules and extensive

COMMON data, a report reflecting module connectivity as a function

of data usage as well as control flow would be of considerable use in

evaluating the effect of changes within a module on the rest of the

system. The information necessary to produce this report is

presently available in the RXVP library file, but a new STEP 8

function would be required to correlate it appropriately. A reverse

invocation (called-by) tree would similarly be useful when changes

in a module (e.g., number or function of parameters) make it

necessary to identify all users of the module.

An additional suggested static check, often not difficult to

accomplish, is for potential use of an undefined DO-loop index

52

MiiWMiii[iir-,"'^^^^<-^-^^ "-'- .■^a-.:-...t,...'..J.^»iBM>-«»-«M^.äj-».^t-i-»t-.» .».^»...if^».»^...»^...

BHI mm

in the communication space of invoking modules, although
they represent a means by which the invoking module
acquires external data. Variables involved in I/O
operations are also excluded from the module communica-
tion space. Although FUNCTION names and I/O variables
represent different classes of data communication than
COMMON variables and formal parameters, including them
in separate sections of the communication space report
would provide a more complete picture of the module's
connectivity with the external data environment.

(d) Ir the variable cross-reference report, array subscript
variables are given the inappropriate usage tag

"READ/PASS".

(e) Variables used in decision predicates are also tagged
"READ/PASS" in the cross-reference report. A separate
report (produced by the command STATIC,PREDICATES)
correctly lists all variables used in predicates. The
cross-reference report should reflect a consistent

usage for these variables.

(f) There is, apparently, an undocumented limit on the number
of variables which can be reported in the variable
cross-reference report. A module containing 521 symbols
caused RXVP to abort due to excessive data base accession
errors when the cross-reference report was requested.
No attempt was made to determine this limit, although it
is known to be greater than 198 symbols.

4.8.2 STEP 8 Discrepancies Noted

(a) A DO-loop index variable previously used as the index
to another loop is given the usage tag "READ/PASS" in
the second DO statement rather than the correct tag,

"DO-INDEX".

(b) When a FUNCTION uses the variable having the FUNCTION
name as an argument in the parameter list for the
invocation of another module (e.g., when passing the
value the FUNCTION attained on the previous invocation),
the invocation check report produced by the command
STATIC,CALL CHECK reports the argument as having
unknown form even though the mode of the FUNCTION is

known.

(c) When an array element is passed as an argument in a
parameter list, a parameter mode error is generated in
the invocation check report, even if the mode of the
array conforms with the mode of the corresponding formal

parameter in the called module.

54

HHiMaiaHMii ----^--

.^„...I.M.LPUMUU^l^l •SW^i^^W^-:

(d) Alternate ENTRY pointa are reported as unknown in the
invocation check and invocation tree reports, even
though identified as type ENTRY in the symbol table for
the multiple-entry module.

(e) COMMON variables used in PROGRAM modules are not reported
in the communication space report for the PROGRAM.
(Recall that a PROGRAM need be changed to a SUBROUTINE
only if it is to be executed under STEP 4 control.)

(f) Assignment of a value to a previously unused variable by
an IF-ASSIGNMENT statement causes a "USE-BEFORE-SET"
warning flag in the cross-reference report.

(g) A variable set by an ASSIGN statement is given the usage
tag "READ/PASS" and, if previously unused, causes a
"USE-BEFORE-SET" warning flag in the cross-reference

report.

(h) In the enumeration section of the READ statement report,
the number of conditional READ statements is included in
the value reported as the number of regular READ state-

ments.

(i) An integer variable used as a FILENAME or as the object
of an ASSIGN statement (i.e., receiving the statement
label), then subsequently used in arithmetic computations,
is defined twice in the module symbol table and cross-
reference report. Explicit typing information is ignored
in reporting the arithmetic use of the variable. (The
discrepancy here is probably in STEP 1. The results only
manifest themselves as indicated In STEP 8.)

4.8.3 STEP 8 Statistics

STEP 8 required approximately 73000io words of CYBER-74 memory

for execution. This includes provision of the Standard Print

Commands for printing the RXVP library tables.

4.9 RXVP STEP 9 _ (TfSTING GUIMNCS)

STEP 9 provides a series of reports, based on the iteration

structure of a module, intended to outline a strategy for achieving

the testing goal of 100% DD-path execution coverage. The thesis on

which the strategy is based is that DD-paths residing at the highest

possible iteration levels are the most efficient targets of testing

activities because "generating a testcase to reach as deeply as

possible into the iteration structure will assure that as much

collateral testing as possible is achieved" [12]. The principal

55

 '■ W.......L - —.—...i.,^.: . -..^ ,... „..-.w.-.-; ^—^ -larimr i i iii...> ,,,.-.-.--. . - . - . .^i

...... ._.,., ^. . ;.■•■■

report depicting this strategy (produced by the STEP 9 command

GUIDE,TESTGUIDE) consists of an expansion of the level-i path class

tree for the module. This tree represents the ancestry relationships

among the different level-i and level-i+1 path classes (i = 0,1,2,...).

The level-i path class tree for the program structure of Figure 2.3

is shown in Figure 4.2. The execution resulting from any invocation

of the module can be described by a traversal of the tree from the

root to some terminal branch. The terminal branch represents the

highest iteration level-i path class involved in the execution.

The TERMINAL BRANCH TEST GUIDE report consists of a series of

"Testcase Set" descriptions, one for each terminal branch lavel-i

path class in the tree. Each description reflects the possible

structural combinations of path classes of different levels which

provide access f the specific terminal branch path class (i.e., the

different possible paths through the tree from the root to the

terminal branch path class). By selecting one of these possible

combinations and supplying testcase data resulting in its execution,

the user is able to access the DD-paths of the "deepest" iteration

level-i path classes in the module (i.e., the terminal branches of

the level-i path class tree). Assistance in constructing appropriate

testcase data to force execution of the selected tree traversal is

provided by STEP 10 reports.

Other STEP 9 reports provide additional information about the

level-i path classes in a module, the properties of DD-paths, and the

relationships between DD-paths and their successors. To remain

within the core limits established locally for daytime operations,

only the TESTGUIDE report was included in the version of STEP 9

installed on the CYBER-74. Most of the information available in the

other STEP 9 reports was available in slightly different format in

STEP 10 reports.

The utility of the guidance provided and how it should be applied

were not obvious to most users of the system. STEP 9 was probably

the least well received portion of RXVP, both in terms of

56

li^M.nhl«U»llM- _ _
^^■■^^ ^^^^

^^r1-»™"-,- " ■■■■■-"■■ ■ ■- •■-^rT^m^^vrf^r^^"-''- ' ■ '

module entry

{1-3-11,1-A-ll} {1-2-5-11} {1-2-10} level-0 path classes

{9}

{6-8,7-8} {6-8,7-8}

{9}

level-1 path classes

level-2 path classes

i Figure 4.2 Level-i Path Class Tree Example

57

.^^.■jJHutaiiiiLw^
wrw^T:-. . i. .,,i..j,jBi.:,.*jftj«aH#Sap.j

arn-ifriiT TIIM

I!

understanding the information presented in the output and in terms

of testing strategy adopted (i.e., accessing the highest iteration

levels as a means of achieving testcase efficiency). The RXVP User's

Guide [9] describes STEP 9 as "a sophisticated tool" affording

"substantial guidance in the testing process" in the following

instances:

(1) when the number of untested DD-paths is so large that an
organized approach to exhaustive testing is not apparent, or

(2) when initial testcase data is not available or cannot be
applied because either the input requirements of the soft-
ware system are not known or the iteration structure is so
complex that appropriate inputs cannot be readily developed.

Neither of these instances arose in our experiences using the RXVP

system in testing activities. An initial set of testcase data was

always available from the program developer and we were always able to

devise tests of the unexecuted portions of a module based principally

on functional rather than structural considerations. The properties

of the unexecuted DD-paths (available via STEP 10 reports), rather

than their locations in the iteration structure, were most helpful in

this regard. It was generally felt that if it were necessary to rely

principally on structural information to devise tests of a module, it

might be more difficult to assess the functional correctness of module

activity and computational results in response to the testcase.

The principal benefit of iteration structure information in

devising testcases derived, in our experience, from the correspondence

often found between level-0 path classes and different functional

flows through the module. Except for this aspect, we do not feel that

the full utility claimed for the level-i path iteration structure

model in developing testing strategy was demonstrated by our experi-

ence. This, of course, could be attributed to the particular

testing activities conducted, the level of sophistication of the

users of the tool, the model itself, or some combination of the three.

4.9.1 STEP 9 Deficiencies Noted

No specific deficiencies were identified in our use of STEP 9.

58

— -... . .., .■■.■^.■■J,1_.,-^.-;v , »■■ -,
"- - ' ■-"•■ - - * "-

11 iiiui J.iii.H' mmv-■ * ■ u- ^ l'W 'Jui,i,i« 141Uj 1.Mi,iWiMPM*
ütoiWMiiyiiiiriiiü-^iiiirif

^«---^r- .^^««p™,!«!,™

!

4.9.2 STEP 9 Discrepancies Noted

(^ In the section of the TESTCUIDE report which describes
(a) terminal branch level-0 path Masses the number reported

as the "TITAL (sic) NUMBER OF DISTINCT LEVEL-0 PATH
?L SES- is actually the number of distinct level-0 paths
in the set of terminal branch level-0 path classes.

4.9.3 STEP 9 Statistics

With only the TERMINAL BRANCH TESTGUIDE report option

available, but including the universal Standard Print Commands, STEP 9

required approximately 58000 words of CYBER-74 memory for execution.

4 10 RXYP_STEP 10 (TEST^ASE.ASSISTANCEJ

Unlike the other RXVP STEPs. STEP 10 is not intended to provide

general reports reflecting characteristics of entire modules or groups

of modules. It is. rather, designed to assist in detailed examina-

tions of selected portions of the DD-path structure of a module.

Specifically, the information provided is intended to assist in the

construction of test case data to access unexercised DD-paths within

the module.
STEP 10 reports are produced in response to commands of the

form: ASSIST.<option>.<construction-specification>. <option> specifies

the form the report is to take. <construction-specification> defines

the set or execution sequence of DD-paths to be included in the report.

The two most commonly used <option> specifications are PICTURE,

which results in a stylized directed graph representing the DD-paths

defined by <construction-specification>. and PROPERTIES, which produces

a report consisting of four parts:

(1) a list of the set or sequence of DD-paths defined by
<construction-specification>

(2) the composite predicate, expressed in "«• «J^^«
variables, which must be satisfied for the defined DD path

sequence to be executed

(%\ the execution order sequence of statements from the module
(3) source tLt which comprises the defined »D-path sequence,

together with the decision outcomes which must result
the indicated execution sequence is to be realized

59

■ ^ ■ --■-■ - - - -—— - ITT '• ' mm'm

■mwju i.i ii ii. IIU a II mem^mm&mmm I III «MM IHILl II 1 » " pi».i4 J..I-Wf.f-i!!i.|fl

■Mai--MiTr' - ,-i ■ ari^

(A) A detailed analysis of variable usage along the defined
DD-path sequence.

There are two categories of <construction-specification>.

One category defines a set of DD-paths having some specific property

(e.g., those DD-paths comprising the level-0 paths in the module).

The other category defines a DD-path execution sequence which includes

a specific DD-path or level-i path class. It is this category of

<construction-specification> which is most often used to examine the

various means of accessing untested portions of a module and to define

the appropriate testcase data to force the desired execution.

In defining the set/sequence to be included in the report, the

"leader" DD-path of a DD-path class is normally selected to represent

the class. Additional STEP 10 commands permit the user to specify

that all DD-paths in a DD-path class are to be reported, or that a

member of the class other than the "leader" is to be selected.

The command ASSIST,PICTURE,ALL DDPATHS, producing a directed

graph of the entire module, was found to be extremely useful in

understanding the overall structure of the module and in planning

testing strategies to access untested portions of the module.

The command ASSIST.PROPERTIES,DDPATHS,<n,m1,m2,...mn>, as

discussed in Section A.5, was found to be an excellent method of

examining the characteristics of the n untested DD-paths m1,m2,...mn

following a STEP A test execution.

Because the process of selecting an appropriate sequence of

execution to reach some untested portion of a module consists largely

of examining the various alternatives presented by STEP 10, we believe

that the utility of this STEP would be enhanced by an installation

permitting its use in an interactive manner. This, unfortunately,

was not the case with our installation, but it is understood that such

interactive installations do exist.

The principal user dissatisfaction with STEP 10 resulted from

the manner in which execution sequences for reaching specified module

segments are generated. These sequences are based only on structural

considerations, with no regard given to logical reachability.

60

■-■ -■-- .■..■■J-. —- ..
■ -- ■ -■ ~ - ■ ■ — -

I

including logical considerations would significantly enhance the

utility of STEP 10. Depending on the extent to which it is carried,

it also might represent a considerable improvement task in terms of

effort. The seed of such an effort may be found in the work on

backtracking formula reduction reported by Miller and Melton [13].

4.10.1 STEP 10 Deficiencies Noted

(a) The purpose of STEP 10 is to offer services "providing
assistance in the generation of testcases" [9]. The
fundamental resource for accomplishing this function
is the PROPERTIES report option. While explicitly
stating every predicate to be satisfied internal to a
module is of interest in many situations, it is
generally not as useful in generating testcases as
information in terms of appropriate states of the module
input space. That is, the present level of information
intended to assist in testcase construction is too low
for that purpose. More backtracking to attempt to define
an appropriate set of input conditions is required.
The developments referenced by Miller and Melton [13]
are obviously designed to address this deficiency,

(b) When investigating the properties of different sets of
DD-paths from several modules (e.g., the untested
DD-paths following a test execution), it is sometimes
not immediately obvious which module is being considered
in an individual report. In this case, it would be
helpful to place the module name in the heading of the
ASSIST,PROPERTIES,<construction-specification> report.

4.10.2 STEP 10 Discrepancies Noted

(a) In listing the properties of DD-path sets/sequences (via
the ASSIST,PROPERTIES,<construction-specification>

command) for several modules (selected by
MODULE - <modname>), if a composite predicate is
truncated in any report due to excessive length, the
composite predicates in all subsequent reports are
truncated, regardless of their lengths.

4.10.3 STEP 10 Statistics

STEP 10 required approximately 62000x0 words of CYBER-74

memory for execution.

61

'"--»''-'■"'"MiiMiiiiriii'HiftiMiii .ma.i-^au..«. >.-^ ■■.■^--wJiMi>.Jj„.j^m».^mm^ .M^..:.,.^M^.a^^„tj.^.j^^„^»,i-w.M^ J

inn J_ jjjjtgj^jgm

i i ii^mi r- ■ni-T-n i in i ..-

\

4.11 RKVP SYSTEM LEVEL CONSIDERATIONS

This section discusses certain system-level aspects of RXVP and

its use. The first topic to be considered is the familiarization and

training required to permit beneficial use of the system. A potential

user has three major questions to be answered:

(1) What services does RXVP provide?

(2) How do I acquire those services?

(3) How do I best use those services in testing activities?

There are three sources of answers to these questions: RXVP user

documentation, formal instruction, and experience. User documentation

consists of a User's Guide [9] and a Reference Manual [10]. The User's

Guide describes the ten RXVP STEPs and generally how they are intended

to be used in support of testing activities. It is not a comprehensive

description of RXVP capabilities, in that only the principal options

of each STEP are presented. The User's Guide adopts a "cookbook"

approach in describing how to access the RXVP services discussed. The

Reference Manual provides a catalog of RXVP capabilities and a more

complete discussion of the RXVP command language and its use in

invoking the desired functions. It is not, however, oriented toward

a discussion of the application of RXVP in testing activities. The

two documents are thus complementary, with the User's Guide

introducing the overall scheme of RXVP use and the Reference Manual

providing the mechanics. As is, perhaps, to be expected with the

first release of any document, there are several typographical and

compositional errors in the User's Guide and Reference Manual. Some

of these are described in Section 4.11.2. Taken together, the User's

Guide and Reference Manual were considered to do an adequate job of

answering the first of the questions posed above.

The RXVP command language was judged to be easy to learn and

convenient to use. The information contained in the Reference Manual

provides sufficient tutelage to permit a user to apply the language

in directing RXVP functions. The Reference Manual, when supplemented

with installation-specific documentation regarding deck structure.

62

r hJ#,-u-.-j..,LJMW^mV-"

■i -r IT" ■

:

file access, etc., provides the necessary answers to the second

question.

The amount of training required to answer the last question

varies with the type of RXVP services being considered. Based on our

experiences, we have classified the major RXVP functions into three

categories, according to the type of user and minimum degree of train-

ing we estimate they imply in order to make effective use of the

information they provide:

(1)

(2)

(3)

Category I services consist of STEP 1, STEP 2 (considered
as a library construction activity only), STEP 6, STEP 7,
STEP 8, and the Standard Print Commands for printing the
module, the module symbol table, and the entry point table.
A casual user, self-trained by reading the User's Guide,
Reference Manual, and installation-specific documentation,
could probably make effective use of these resources.

Category II services consist of all the above plus STEP 2
(including DD-path information), STEP 3, STEP 4 (on the
host machine only), STEP 5 (DD-path reports only), and
the Standard Print Command for producing the DD-path
report. A casual user, after studying the user
documentation and receiving about 8 to 12 hours of formal
training in directed graph structural modelling and its
use in DD-path testing, would probably be in a position to
use Category II services effectively.

Category III services include the above, as well as STEP 2
(complete with level-i path and complexity reports),
STEP 5 (all reports), STEP 9, STEP 10, and the Standard
Print Commands for producing the module Summary and History
reports and level-i path (class) report. To make effective
use of this information, a total of around 20 to 28 hours
of initial formal training is probably required. This
training would include complexity measure computation,
iteration structure modelling, and their applications in
program testing strategies. Our experience indicates that
rather frequent use of RXVP is also required to remain
proficient in the use of these concepts.

In each of these categories, efficiency in using the RXVP services

will obviously improve with experience.

As reported in Section A.A.4, we feel that application of RXVP

in testing activities on other than the RXVP host machine probably

requires additional familiarization/training in the internal operations

of STEP 4. This is particularly true if the machine on which the

63

■ ■'■- — ■ - -- - ■ ■■---- —'- ■- ---■■- -■— •• —•-■ ^- ■■— • -■ ■ ■ ■ ■- ■-- - — - - -- - —■■■—- —-

PWPI«»««>«IW«m™™l»«»P?P**W™»«»PB^

s

needed in support of testing activities. The impact of having to

create a new library for each separate RXVP run was particularly

detrimental in the area of test case assistance (STEP 10), which, as

previously discussed, is essentially interactive in nature. In a

more permanent installation, some accommodation could undoubtedly be

reached which would alleviate the situation just described. We

mention it here simply to illustrate the importance of considering

the local operating environment when assessing the potential utility

of RXVP.
The following two sections identify deficiencies and

discrepancies found in RXVP functions at the system level and in the

user documentation.

4.11.1 System-Level Deficiencies

(a) When several reports are generated for each of several
modules during a single RXVP execution, locating a
specific report for a specific module in the resultant
output is often not convenient. (RXVP output tends to be
voluminous.) Since RXVP is intended for use in examining
large software systems, this is a disadvantage which
should be corrected. A Table of Contents at the
beginning of the output generated by each execution would
be a most useful addition. Considering the manner in
which the output print file is produced, generating such
a Table should not be overly difficult.

(b) The System Wrap-Up Summary, produced at the end of each
RXVP execution, reports certain statistics describing the
modules contained in the RXVP library file (e.g., number
of statements, number of symbols, number of DD-paths,
etc.). A total value over all modules in the library is
generated for some of these individual statistics. The
total number of DD-paths in all modules of a program
(which, generally speaking, constitutes a library file)
would make it easier to determine when the STEP 4 default
storage capacities need to be overridden in testing the

instrumented program.

4.11.2 System-Level Discrepancies

(a) The heading for the report generated by the Standard
Print Command PRINT,LIP describes the contents of the
report as the LEVEL-I PATHS FOR MODULE <modnarae>.
What is, in fact, reported is a collection of ^
representative level-i paths (composed of "leader

65

.l^i^Jj^«.^....^....^^»...^^^ ^.,.:. .. .,■,,..--. ■-■■iMimiii'MiMlltitoriTili-ftii- n„~~^---——■»^■■-■..-..l-J. :■ -.■.:;.. .i.^ '^um^imaa^ia.«»», „^,...-al

I""1 ■ I I ■ —^""ts

DD-paths), one from each level-i path class in the
■■ module. The RXVP Reference Manual describes this report

as "...a detailed listing of the RXVP information
describing each Level-i Path Class identified for the
current module." This is also misleading, as the entire
classes are not described. The report should reflect all
DD-paths in each DD-path class (e.g., in parentheses
following the "leader" DD-path of the class) contained in
the level-i path classes of the module.

As a related general observation, a great deal of user
confusion and uncertainty could be avoided by more
careful use of the terms "level-i path" and "level-i path
class" in both RXVP reports and user documentation.

(b) During iteration of a set of RXVP commands for a group
of modules specified by the module selection command
FOR M0DULES=<modl>,<mod2> when continuation cards
are required to complete the module specification, the
system attempts to Interpret the continuation cards as
RXVP commands as each new module is selected and reports
them as unrecognizable. Following this, the intended
set of commands is processed correctly for each module
in the group.

(c) The STEP 8 denominator and product expression reports are
not documented in the Reference Manual. The MODE CHECK
report is illustrated but there is no written explanation
of the illustrations. (It appears, in this latter case,
that a page of text was omitted prior to printing the

manual.)

(d) In Table 4.1-2 of the Reference Manual, illustrating the
method for overriding the STEP 4 default storage values,
the COMMON block ONETST, containing the single test
DD-path counters, is omitted. Likewise, the COMMON
blocks CUMTST and DDPCUM are omitted from the lilt of
default storage areas in Table 4.1-1.

(e) ^he required execution verb, STRUCTURAL, is missing from
the command sequence in the second example of Section 2.3
of the Reference Manual.

m The method given in Section 4.2.1 of the Reference Manual
for continuing the list of MODULES REPORTING in STEP 4

is incorrect.

4.11.3 System-Level Statistics

The approximate amount of memory required for each RXVP STEP,

if installed as an independent entity, was previously given

individually. In some cases, the Standard Print Commands (requiring

66

_.::, _:.__:._ . _. .i. ■..■__. _ ■._■...-_-.-., ___.:_..- iitifflMiiM»!^ ;»^a«^,BnA^...».^M^:,m

J J^^L^MJWiPi^'.-U.-.IL..

approximately IISOOXQ words) were included with the STEP. Installed

as a series of overlays, a field length of less than 6000010 words

was sufficient to permit access to all RXVP functions (except as

discussed in Section 4.9).

The files containing the RXVP binary modules themselves

occupied approximately 192000 words of mass storage.

67

iüiffiiiiaairrr ■■' •^..te^mJ*^^ ^^aaAAlaa^ aim

as iir.pl emeuted in RXVP, Level 1): (1) testing coverage services,

reporting what portions of a program have been exercised and in what

combinations, both for an individual test case and cumulatively for a

set of test cases; (2) test case data generation services, analyzing

the properties of program segments of interest and backtracking to

indicate appropriate states of the program input space to access those

segments; and' (3) static analyses and reports reflecting both

intra- and inter-module control and data flow, checking conformance

with programming standards, reporting potential errors, etc.

Regarding RXVP, Level 1, specifically:

(1) The system provides an impressive array of services. It is
new to operational use, however, and some of these services
are better developed than others. There is a need for
further refinement/improvement before the system achieves
its full potential. The design is such that incorporation
of these and future enhancements should be possible without

major revision of the total system.

(2) A more elaborate syntax analyzer is required in STEP 1 to
make the system compatible with specified FORTRAN dialects.

(3) The DD-path structural mode] is not difficult to fathom and
provides a convenient basis for examining the execution

coverage of program logic .

(A) The utility of the iteration structure model in testing
strategy guidance and test case construction assistance
has not been adequately demonstrated. As currently defined,
the model can fail to reflect actual iteration in a FORTRAN
module. It is, in addition, not for the casual use of the
programmer since it requires some effort to learn and some
continued application to retain proficiency in its use.

(5) The static analysis features of STEP 8 represent a set of
potentially very useful services. There is, however, room
for improvement in the implementation of several current
functions. A few additional capabilities would, in our
estimation, improve the utility of the STEP.

(6) There are critical errors in both the STEP 3 and STEP 6
instrumentors which require corrections.

(7) The core expansion produced by the instrumentation process
can be a serious problem, particularly in testing programs
close to the memory limit of the machine. It is often
necessary to instrument and test a portion of a program
(or even a program module) at a time, later correlating the
results of the separate executions manually. In the same

70

I

. I

vein, recording the execution trace file may become a
problem when testing modules involving a considerable
amount of iteration, particularly on systems having limited
file space or which limit the number of file references.

(8) The execution coverage reports and statement-level execution
reports are excellent. These are easily the best developed
aspects of the system, although the STEP 5 (ANALYZER)
reports offer little in addition to the STEP 4 (QUICKLOOK)
reports as presently constituted.

(9) The STEP 9 testing strategy guidance was not particularly
well received. It required too much knowledge of RXVP
structural terminology and too much flipping of structural
report pages to be conveniently used, and was based on a
testing approach that was not widely accepted.

(10) The STEP 10 test case construction assistance represents
a good start, but requires more development. In particular,
logical as well as structural reachability needs to be
considered and more backtracking capability provided if the
assistance is to be of maximum benefit to the user.

(11) The RXVP library files required what, at this installation,
is a considerable amount of on-line storage. The frequent
inability to catalog library files for future reference
resulted in a mode of operation which reduced the utility of
the system.

(12) An RXVP specialist to assist users in applying the system is
recommended for any installation where a significant amount
of use is anticipated, particularly if testing on other than
the RXVP host machine is involved.

Throughout this report it has been our objective to evaluate RXVP

as it came to exist during the course of the project. The items

mentioned herein reflect the status of our installation as of

October, 1975. Any erroneous conclusions or inferences are a result

of our still imperfect knowledge of the system, viewed from the

perspective of a user. We hope the information presented will be of

interest to both potential users and developers of this and other

automated verification aids.

71

-■ - --" -■- ■"—
-■■■■-- - ■- -... .. ■ .- .

■-- -
" —- ■*

wii. «am n i.i «-!■.". ■-ii...-«^^*»^«*-v^ ijj.up^ji.iijppfc.-^^T^ ^yypupjui p^^^P|P||p^j^WSrr^y.,r..rr^

REFERENCES

1. Holland, J. G.
"Acceptance Testing for Application Programs"
Program Test Methods, W. C. Hetzel (ed.)
Prentice-Hall, 1973.

2. Gruenberger, F.
"Program Testing and Validating"
Datamation, 14:7, July 1968, pp 39-47.

3. Boehm, B. W., et.al.

Information Processing/Data Automation Implications of Air Force
Command and Control Requirements in the 1980's (CCIP-85). Vol I,
AD742292, April 1972.

4. Reifer, D. J.

"Automated Aids for Reliable Software"
Proceedings of 1975 International Conference on Reliable Software
IEEE Cat. No. 75CH0940-7CSR, April 1975, pp 131-142.

5. Kennedy, J. E.

A Survey of Automated Computer Program Verification Tools.
Aerospace Corporation Report TOR-0075 (5112)-1, August 1974.

6. Ramamoorthy, C. V. and S. F. Ho
"Testing Large Software with Automated Evaluation Systems"
Proceedings of 1975 International Conference on Reliable Software
op. cit., pp 382-394. '

7. Paige, M. R.

"Program Graphs, an Algebra, and Their Implication for Programming"
IEEE Transactions on Software Engineering, SE-1:3, September 1975,
pp 286-291.

8. Miller, E. F. Jr.
Methodology for Comprehensive Software Testing
ADA013111, February 1975.

9. RXVP FORTRAN Automatic Verification System, Level 1, User's Guide.
General Research Corporation, May 1975.

10. RXVP FORTRAN Automatic Verification System, Level 1. Reference
Manual, General Research Corporation, May 1975.

11. Bolan, C. and G. Jacopini
"Flow Diagrams, Turing Machines and Languages With Only Two
Formation Rules"
Communications of the ACM, 9:5, May 1966, pp 366-371.

73

.ir..--; -r— -

FRECSDING PAGE BLANK-NOT fILMSD

^■■^ ^ ^^^-^ -..-.■J.-- .- -—-.^....-^ ■J.^..—..■ .,.;-— ^^. »ir... ■nir-"-1 ■-". ... -.. ^ ■*— •* ■ in rmimiftlBÜMHi

mmmmmmmiimm - i "■ ' ' " '""l ■ ■■ '"

12,

13.

14,

15.

Miller, E. F. Jr., et.al. M

"Structurally Based Automatic Program Testing
prepared for EASC0N'7A, Washington, D.C., 7-9 October 1974

Miller, E. F. Jr. and R. A. Melton ^
"Automated Generation of Testcase Datasets _ ,. .. „ ,_._
Proceedings of 1975 International Conference on Reliable Software,

op.cit., pp 51-58.

Goodenough, J. B. and S. L. Gerhart
"Toward a Theory of Test Data Selection'
IEEE Transactions on Software Engineering, SE-1:2, June 19/5,

pp 156-173

Brown, J. R. and M. Lipow
"Testinp for Software Reliability"
Proceedings of 1975 International Conference on Reliable Software,

op.cit., pp 518-527.

74

L ~- ■ ■ -■ - ■ ■ -- n-«.».!.-- ■ i.--..-. .■.. . :■■.. ■ ,,, ■■ |1t||^--.^-.. ^ _... ... ■- ""■■ '■--■---■d

"Z"^* [^

APPENDIX A

RXVP Processing Statistics

Table A.l presents statistics collected during RXVP processing

of a set of FORTRAN programs of various types. The following RXVP

control options were used in the processing reflected by the

statistics:

STEP 1: BASIC,CARD IMAr,ES=OFF.
BASIC,COMMENTS=OFF.

STEP 2: STRUCTURAL,COMPUTE=FULL.
STRUCTURAL,PRINT=FULL.

(i.e.. Determine DD-paths,
level-i paths, and complexity
measures, and generate all
STRUCTURAL reports.)

STEP 8: STATIC,ALL. (i.e.. Generate all static
analyses and reports.)

STEP 3: INSTRUMENT,LIST=OFF.

STEP 4: QUICKLOOK,ALL MODULES.
QUICKLOOK,ON.

(i.e.. Generate all four
QUICKLOOK reports for all
modules reporting during the
test execution.)

STEP 5: ANALYZER,ALL MODULES,
ANALYZER,ALL.

(i.e.. Produce all available
STEP 5 reports covering all
modules in the program.)

STEP 7: SMMALYZE,ALL MODULES.
SMANALYZE,TYPE=SUMMARY,

(i.e.. Produce a single, full
statement-level report for
each module summarizing the
cumulative execution
resulting from all invocations

of the module.)

75

. . ,.r-.:.w,.. ■:-V;:.^,... ,- .•:.^....^:^.t . Itkbt^H ■■■ ■■ :^ ■■■.:.■ .■.^'■l..-'-,::..iC:-J^^.,~^J^ — ■ " ■" —^^^-....„.Iw..... ^ ^-^..■...^ .-^^.. J.-J.. ■ ..-^ ■■•■.■ .^.^ ..,. , .. ^^ ^.-.u^.^.;. ^,^^^>.^.JI^^..^^

r <P—w» ZLZ— —z

.1

.

i

u
> ^. M 1-.

aq

i o ^ c J
i -t -^ -*

i r-i n CJ

in
o

o

Ifl H ^ (s r1» <* 00

3S O 00

(S eg CM tn •<t
r-t

CO

00
CO

o
r-1

i-.
CN

4 vT

r* rH rH CM ri •^r o

3

r i m -x r^i <t ^

a
in

oco oo^i incoin-J-l-J
^, ^T <t (D tX} r-i <T> OiiCi

CT,cooinin<fOin
ON

U-, ,_(^y t-t iH >H MS
H

r^ ^r f-i »H i

mrgmr^or-oO'-H in

<r <-*•-* O
.-4

OD QO O m CTN ^l^t
m m vT) -x) \D CM rH
.^ ,_(,-(tN CM ^O^

in <i co <T •~D
<r o C3 en

m ri m

,_) en m CM ^H as fn *^ t

^£icncno^(n^,';fr~'

CM CM CM co m r-^

ro m m r~~ in co ^ Hit

r-t oo tr« <tl^i
<t <T> tH m CT*
m f^ r-(^HJON

d <r ^r cn|<f
CM oo r-l r-t m

oo m m r-t (Tv

^-i rg en -

<C < < •

O O CO CM CM Iflfc
oo ^ n vc o: c-iUn

. -H in

^H rj en <r m ^O .
 r

m CQ ca ca on to '

^t^im^finvDr^co.

76

:..^^.^._.....^^^.ti£^^-.^.i^^^^^^ .^■,;J..,.-..;:.:-'.::^:^^^^

y^.WJklMijLW *.- - J^'H1;JK' .-^ - »^t l.'^i H". j. iJ. ■ —-.^i ii^FV '-Tf■.?. -. .f^lljUp^BKgBI

iifn-rnini

i i

3 'j

d^

-1 r

e ■

2

-t J .0 .^ .n rn in .n ri in r j ^ in »n -r rn «3 in xD

(-. |Si -t <T> oo
■ O -J ^JO ^ ^

, OD -O O »^ rH O C-l ' - "^ ^ ^ ^

n ci m ro r- <t -£- (-1 <^ <-< in o^ rJ Si ^1 ^
O ^O t-J ^ --^ « ^ ^ ^ ^ r, ^ ,n -, ^ ^

00 m a> -4 ^
-^t r-i lj> CN T

m oo
m o in

P4 <« (-1 QQ A *^ 'H e>4 tS Ht N m m 00

vt) «^ •JS m
^O ^H m m r-t

c r~- n CJ co ^ -o
PH (S CN an •-' co

CO O
n in

vO CO r^. r^ r^
o m co

in
CO

r-(CO '-I ^H \0 00 <*! H ^ rH co n vD
n (T* m OS

^D

cn

CO
Q
ro

2
4

.6
5

6

1
.5

0

3
.8

9

.4
9 r- ON ^o ^i m
[-1 <t ■£! O 'O n

•X) o a-
m

H

O o

g
r-4

(J* •*
-»

O
M>
H ^j o X t^
m o r-i m

O m
m

co ^1 -a
N -t O 00

cn
m

CM

C^ 00

H -4-

(N CO

CO

o
in

CM op
m

isssscgssssasssaasssÄsgii

CO U
U O
O *-<

1 a:> ^O ^J -i) m to -^ (T. r>i CM 'O iH rH r-j a^ >

r-i CO VO tTl o>

I ■-! ro C- 00 -H vD f^ 00

S8««?5Ei£SÄa-SSSSSSSS§*5ÄS||

r-i --i -- i fi -T m -iJ r- no Oi O -H CM en -t
H nj ^ -. in ^ - 'X. a. 3 S -H H H - H M rt H N ^J « « ^ :
o o ti ii o d o o o d ü ii ö o o o o o o o ü o o u ■

■ H

3 w 4i

U 0 C

•H 3 w C D C
ui u a1 o t-" o

u 4» w 3 xl 3
«J U 3 U

iOT3U'rH O O O 1W
41 -d C ft) 01

^l * Ü 3 C E -H
OJ 1) rt M tfl 0 n)

O 0 <fl K 0 >- O O
^JO Si M ä M » H

01 a)

U T? Qi l'-i W

o o o o o
X ?: ?: 52 B

77
■Ür U. S. :.0VfRNHlNI PklNTINr.

